Skip to main content

What Does Communication of Phages Mean?

  • Chapter
  • First Online:
Biocommunication of Phages

Abstract

Phages have serious effects on global energy and nutrient cycles. Phages actively compete for host. They can distinguish between ‘self’ and ‘non-self’ (complement same, preclude others). They process and evaluate available information and then modify their behaviour accordingly. These diverse competences show us that this capacity to evaluate information is possible owing to communication processes within phages (intra-organismic), between the same, related and different phage species (interorganismic), and between phages and non-phage organisms (transorganismic). This is crucial in coordinating infection strategies (lytic vs. lysogenic) and recombination in phage genomes. Therefore it is essential to investigate what communication of phages means and to identify the difference of the biocommunication approach to investigations that are restricted to the molecular biological perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST (2009) Bacteriophage intraspecific cooperation and defection. In: Adams HT (ed) Contemporary trends in bacteriophage research. Nova Science Publishers, New York, pp 191–215

    Google Scholar 

  • Abedon ST (2011) Communication among Phages, Bacteria and soil environments. In: Witzany G (ed) Biocommunication of soil microorganisms. Springer, Dortrecht, pp 37–65

    Google Scholar 

  • Abedon ST (2017) Commentary: communication between viruses guides Lysis-Lysogeny decisions. Front Microbiol 8:983

    PubMed  PubMed Central  Google Scholar 

  • Ajuebor J, Buttimer C, Arroyo-Moreno S et al (2018) Comparison of Staphylococcus phage K with close phage relatives commonly employed in phage therapeutics. Antibiotics (Basel) 7(2):E37. https://doi.org/10.3390/antibiotics7020037

    Article  CAS  Google Scholar 

  • Amitai G, Sorek R (2017) Intracellular signaling in CRISPR-Cas defense. Science 357(6351):550–551

    CAS  PubMed  Google Scholar 

  • Argov T, Azulay G, Pasechnek A et al (2017) Temperate bacteriophages as regulators of host behavior. Curr Opin Microbiol 38:81–87

    CAS  PubMed  Google Scholar 

  • Argov T, Sapir SR, Pasechnek A et al (2019) Coordination of cohabiting phage elements supports bacteria-phage cooperation. Nat Commun 10(1):5288

    PubMed  PubMed Central  Google Scholar 

  • Armon R (2011) Soil Bacteria and bacteriophages. In: Witzany G (ed) Biocommunication in soil microorganisms. Springer, Dortrecht, pp 67–112

    Google Scholar 

  • Bassler BL, Losick R (2006) Bacterially speaking. Cell 125(2):237–246

    CAS  PubMed  Google Scholar 

  • Batinovic S, Wassef F, Knowler SA et al (2019) Bacteriophages in natural and artificial environments. Pathogens 8(3):E100

    PubMed  Google Scholar 

  • Ben-Jacob E (2014) My encounters with bacteria--learning about communication, cooperation and choice. Phys Biol 11(5):053009

    PubMed  Google Scholar 

  • Berjón-Otero M, Koslová A, Fischer MG (2019) The dual lifestyle of genome-integrating virophages in protists. Ann N Y Acad Sci 1447(1):97–109

    PubMed  Google Scholar 

  • Bernheim A, Sorek R (2018) Viruses cooperate to defeat bacteria. Nature 559(7715):482–484

    CAS  PubMed  Google Scholar 

  • Bolocan AS, Upadrasta A, Bettio PHA et al (2019) Evaluation of phage therapy in the context of enterococcus faecalis and its associated diseases. Viruses 11(4):E366. https://doi.org/10.3390/v11040366

    Article  CAS  PubMed  Google Scholar 

  • Bondy-Denomy J, Davidson AR (2014) When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J Microbiol 52(3):235–242

    CAS  PubMed  Google Scholar 

  • Borges AL, Zhang JY, Rollins MF et al (2018) Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174(4):917–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bru J-L, Rawson B, Trinh C et al (2019) PQS produced by the Pseudomonas aeruginosa stress response repels swarms away from bacteriophage and antibiotics. J Bacteriol 201:e00383–e00319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brüssow H (2018) Population genomics of bacteriophages. In: Polz M, Rajora O (eds) Population genomics: microorganisms. Population genomics. Springer, Cham, pp 297–234

    Google Scholar 

  • Bryan D, El-Shibiny A, Hobbs Z et al (2016) Bacteriophage T4 infection of stationary Phase E. coli: life after log from a phage perspective. Front Microbiol 7:1391

    PubMed  PubMed Central  Google Scholar 

  • Bull JJ, Regoes RR (2006) Pharmacodynamics of non-replicating viruses, bacteriocins and lysins. Proc Biol Sci 273(1602):2703–2712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll-Portillo A, Lin HC (2019) Bacteriophage and the innate immune system: access and Signaling. Microorganisms 7(12):E625

    PubMed  Google Scholar 

  • Casadesús J, D’Ari R (2002) Memory in bacteria and phage. BioEssays 24(6):512–518

    PubMed  Google Scholar 

  • Cenens W, Makumi A, Mebrhatu MT et al (2013) Phage-host interactions during pseudolysogeny: lessons from the Pid/dgo interaction. Bacteriophage 3(1):e25029

    PubMed  PubMed Central  Google Scholar 

  • Ceyssens PJ, Minakhin L, Van den Bossche A et al (2014) Development of giant bacteriophage ϕKZ is independent of the host transcription apparatus. J Virol 88(18):10501–10510

    PubMed  PubMed Central  Google Scholar 

  • Clokie MRJ (2018) Bacterial defence molecules target viral DNA. Nature 564(7735):199–200

    CAS  PubMed  Google Scholar 

  • Cohen D, Melamed S, Millman A et al (2019) Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 574(7780):691–695

    CAS  PubMed  Google Scholar 

  • Díaz-Muñoz SL, Koskella B (2014) Bacteria-phage interactions in natural environments. Adv Appl Microbiol 89:135–183

    PubMed  Google Scholar 

  • Dimitriu T, Ashby B, Westra ER (2019) Transposition: a CRISPR way to get around. Curr Biol 29(18):R886–R889

    CAS  PubMed  Google Scholar 

  • Domingo-Calap P, Delgado-Martínez J (2018) Bacteriophages: protagonists of a post-antibiotic era. Antibiotics (Basel) 7(3)

    Google Scholar 

  • Engelberg-Kulka H, Glaser G (1999) Addiction modules and programmed cell death and antideath in bacterial cultures. Annu Rev Microbiol 53:43–70

    CAS  PubMed  Google Scholar 

  • Erez Z, Steinberger-Levy I, Shamir M et al (2017) Communication between viruses guides lysis-lysogeny decisions. Nature 541(7638):488–493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feiner R, Argov T, Rabinovich L et al (2015) A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol 13(10):641–650

    CAS  PubMed  Google Scholar 

  • Fillol-Salom A, Alsaadi A, Sousa JAM et al (2019) Bacteriophages benefit from generalized transduction. PLoS Pathog 15(7):e1007888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forterre P (2013) The virocell concept and environmental microbiology. ISME J 7(2):233–236

    CAS  PubMed  Google Scholar 

  • Gallego Del Sol F, Penadés JR, Marina A (2019) Deciphering the molecular mechanism underpinning phage arbitrium communication systems. Mol Cell 74(1):59–72.e3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Górski A, Jończyk-Matysiak E, Łusiak-Szelachowska M et al (2018) Phage therapy in prostatitis: recent prospects. Front Microbiol 9:1434. https://doi.org/10.3389/fmicb.2018.01434

    Article  PubMed  PubMed Central  Google Scholar 

  • Górski A, Międzybrodzki R, Węgrzyn G et al (2019) Phage therapy: current status and perspectives. Med Res Rev 40:459–463. https://doi.org/10.1002/med.21593

    Article  PubMed  Google Scholar 

  • Guerin E, Shkoporov A, Stockdale SR et al (2018) Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe 24(5):653–664.e6

    CAS  PubMed  Google Scholar 

  • Guglielmini J, Woo AC, Krupovic M et al (2019) Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proc Natl Acad Sci U S A 116(39):19585–19592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hambly E, Suttle CA (2005) The viriosphere, diversity, and genetic exchange within phage communities. Curr Opin Microbiol 8(4):444–450

    CAS  PubMed  Google Scholar 

  • Harms A, Brodersen DE, Mitarai N et al (2018) Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol Cell 70(5):768–784

    CAS  PubMed  Google Scholar 

  • Harrington LB, Burstein D, Chen JS et al (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839–842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfull GF (2015) Dark matter of the biosphere: the amazing world of bacteriophage diversity. J Virol 89:8107–8110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hazan R, Sat B et al (2001) Postsegregational killing mediated by the P1 phage “addiction module”phd-doc requires the Escherichia coli programmed cell death system mazEF. J Bacteriol 183(6):2046–2050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser D, Losick R (1993) How and why bacteria talk to each other. Cell 73(5):873–885

    CAS  PubMed  Google Scholar 

  • Kavagutti VS, Andrei AŞ, Mehrshad M et al (2019) Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome 7(1):135

    PubMed  PubMed Central  Google Scholar 

  • Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29(18):3742–3756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlenbrander PE, Andersen RN, Blehert DS et al (2002) Communication among Oral Bacteria. Microbiol Mol Biol Rev 66:486–505

    Google Scholar 

  • Kohlenbrander PE, Egland PG, Diaz PI et al (2005) Genome-genome interactions: bacterial communities in initial dental plaque. Trends Microbiol 13:11–15

    Google Scholar 

  • Koonin EV, Krupovic M (2017) Polintons, virophages and transpovirons: a tangled web linking viruses, transposons and immunity. Curr Opin Virol 25:7–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Makarova KS (2019) Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc B 374:20180087

    CAS  Google Scholar 

  • Koonin EV, Krupovic M, Yutin N (2015) Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Ann N Y Acad Sci 1341:10–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Makarova KS, Wolf YI et al (2019) Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat Rev Genet 21:119–131. https://doi.org/10.1038/s41576-019-0172-9

    Article  CAS  PubMed  Google Scholar 

  • La Scola B, Desnues C, Pagnier I et al (2008) The virophage as a unique parasite of the giant mimivirus. Nature 455(7209):100–104

    PubMed  Google Scholar 

  • Landsberger M, Gandon S, Meaden S et al (2018) Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174(4):908–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnherr H, Yarmolinsky MB (1995) Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. Proc Natl Acad Sci U S A 92(8):3274–3277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnherr H, Maguin E, Jafri S et al (1993) Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J Mol Biol 233(3):414–428

    CAS  PubMed  Google Scholar 

  • Lima-Mendez G, Toussaint A, Leplae R (2011) A modular view of the bacteriophage genomic space: identification of host and lifestyle marker modules. Res Microbiol 162(8):737–746

    CAS  PubMed  Google Scholar 

  • Liu T, Renberg SK, Haggård-Ljungquist E (1997) Derepression of prophage P2 by satellite phage P4: cloning of the P4 epsilon gene and identification of its product. J Virol 71(6):4502–4508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manrique P, Dills M, Young MJ (2017) The human gut phage community and its implications for health and disease. Viruses 9(6):E141

    PubMed  Google Scholar 

  • Meaden S, Capria L, Alseth E et al (2019) Transient CRISPR immunity leads to coexistence with phages. bioRxiv. https://doi.org/10.1101/2019.12.19.882027

  • Moelling K (2016) Nutrition and the microbiome. Ann N Y Acad Sci 1371:53–64

    Google Scholar 

  • Mougari S, Sahmi-Bounsiar D, Levasseur A et al (2019) Virophages of Giant viruses: an update at eleven. Viruses 11(8):E733

    PubMed  Google Scholar 

  • Mruk I, Kobayashi I (2014) To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res 42(1):70–86

    CAS  PubMed  Google Scholar 

  • Mulani MS, Kamble EE, Kumkar SN et al (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10:539

    PubMed  PubMed Central  Google Scholar 

  • Nakayama K, Takashima K, Ishihara H, et al (2000) The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38:213–231

    Google Scholar 

  • Ofir G, Sorek R (2018) Contemporary phage biology: from classic models to new insights. Cell 172(6):1260–1270

    CAS  PubMed  Google Scholar 

  • Paez-Espino D, Zhou J, Roux S et al (2019) Diversity, evolution, and classification of virophages uncovered through global metagenomics. Microbiome 7(1):157

    PubMed  PubMed Central  Google Scholar 

  • Pirnay JP, Cooper I, Caplin J et al (2018) Silk route to the acceptance and re-implementation of bacteriophage therapy-part II. Antibiotics (basel) 7(2):35

    Google Scholar 

  • Rehman S, Ali Z, Khan M et al (2019) The dawn of phage therapy. Rev Med Virol 29(4):e2041

    PubMed  Google Scholar 

  • Riley MA (1998) Molecular mechanisms of bacteriocin evolution. Annu Rev Genet 32:255–278

    CAS  PubMed  Google Scholar 

  • Rohde C, Wittmann J, Kutter E (2018a) Bacteriophages: a therapy concept against multi-drug-resistant Bacteria. Surg Infect 19(8):737–744. https://doi.org/10.1089/sur.2018.184

    Article  Google Scholar 

  • Rohde C, Resch G, Pirnay JP et al (2018b) Expert opinion on three phage therapy related topics: bacterial phage resistance, phage training and Prophages in bacterial production strains. Viruses 10(4):E178

    PubMed  Google Scholar 

  • Rohwer F, Youle M, Maughan H, et al (2014) Life in our phage world. A centennial field guide to the earth’s most diverse inhabitants. Wholon, San Diego

    Google Scholar 

  • Roux S, Krupovic M, Daly RA et al (2019) Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes. Nat Microbiol 4(11):1895–1906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakr Y, Jaschinski U, Wittebole X et al (2018) Sepsis in intensive care unit patients: worldwide data from the intensive care over nations audit. Open forum. Infect Dis Ther 5(12):ofy313. https://doi.org/10.1093/ofid/ofy313

    Article  Google Scholar 

  • Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int:2475067

    Google Scholar 

  • Sarker SA, Berger B, Deng Y et al (2017) Oral application of Escherichia coli bacteriophage: safety tests in healthy and diarrheal children from Bangladesh. Environ Microbiol 19(1):237–250

    CAS  PubMed  Google Scholar 

  • Sausset R, Petit MA, Gaboriau-Rothiau V et al (2020) New insights into intestinal phages. Mucosal Immunol 13:205–215. https://doi.org/10.1038/s41385-019-0250-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauder S, Bassler BL (2001) The languages of bacteria. Gen Develop 15:1468–1480

    CAS  Google Scholar 

  • Seed KD, Lazinski DW, Calderwood SB et al (2013) A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494:489–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shkoporov AN, Clooney AG, Sutton TDS et al (2019) The human gut Virome is highly diverse, stable, and individual specific. Cell Host Microbe 26(4):527–541

    CAS  PubMed  Google Scholar 

  • Siringan P, Connerton PL, Cummings NJ et al (2014) Alternative bacteriophage life cycles: the carrier state of campylobacter jejuni. Open Biol 4:130200

    PubMed  PubMed Central  Google Scholar 

  • Stanley SY, Maxwell KL (2018) Phage-encoded anti-CRISPR defenses. Annu Rev Genet 52:445–464

    CAS  PubMed  Google Scholar 

  • Stedman KM (2015) Deep recombination: RNA and ssDNA virus genes in DANN virus and host genomes. Annu Rev Virol 2(1):203–217

    CAS  PubMed  Google Scholar 

  • Stokar-Avihail A, Tal N, Erez Z et al (2019) Widespread utilization of peptide communication in phages infecting soil and pathogenic Bacteria. Cell Host Microbe 25(5):746–755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strecker J, Ladha A, Gardner Z et al (2019) RNA-guided DNA insertion with CRISPR-associated transposases. Science 365:48–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabib-Salazar A, Mulvenna N, Severinov K et al (2019) Xenogeneic regulation of the bacterial transcription machinery. J Mol Biol 431(20):4078–4092

    CAS  PubMed  Google Scholar 

  • Turner PE, Chao L (1999) Prisoner’s dilemma in an RNA virus. Nature 398(6726):441–443

    CAS  PubMed  Google Scholar 

  • van Sluijs L, van Houte S, van der Oost J, Brouns SJ et al (2019) Addiction systems antagonize bacterial adaptive immunity. FEMS Microbiol Lett 366(5):fnz047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villarreal LP (2005) Viruses and the evolution of life. ASM Press, Washington

    Google Scholar 

  • Villarreal LP (2009) The source of self: genetic parasites and the origin of adaptive immunity. Ann N Y Acad Sci 1178:194–232

    CAS  PubMed  Google Scholar 

  • Villarreal LP (2011) Viral ancestors of antiviral systems. Viruses 3(10):1933–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villarreal L (2012a) Viruses and host evolution: virus-mediated self identity. Adv Exp Med Biol 738:185–217

    CAS  PubMed  Google Scholar 

  • Villarreal LP (2012b) The addiction module as a social force. In: Witzany G (ed) Viruses: essential agents of life. Springer, Dortrecht, pp 107–145

    Google Scholar 

  • Villarreal LP (2015) Force for ancient and recent life: viral and stem-loop RNA consortia promote life. Ann N Y Acad Sci 1341:25–34

    CAS  PubMed  Google Scholar 

  • Villarreal LP (2016) Persistent virus and addiction modules: an engine of symbiosis. Curr Opin Microbiol 31:70–79

    CAS  PubMed  Google Scholar 

  • Villarreal LP, Witzany G (2015) When competing viruses unify: evolution, conservation, and plasticity of genetic identities. J Mol Evol 80(5–6):305–318

    CAS  PubMed  Google Scholar 

  • Villarreal LP, Witzany G (2019) That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann N Y Acad Sci 1447:5–20

    PubMed  Google Scholar 

  • Wang X, Kim Y, Ma Q et al (2010) Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1:147

    PubMed  PubMed Central  Google Scholar 

  • Warwick-Dugdale J, Buchholz HH, Allen MJ et al (2019) Host-hijacking and planktonic piracy: how phages command the microbial high seas. Virol J 16(1):15

    PubMed  PubMed Central  Google Scholar 

  • Weitz JS, Mileyko Y, Joh RI et al (2008) Collective decision making in bacterial viruses. Biophys J 95(6):2673–2680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westra ER, Buckling A, Fineran PC (2014) CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol 12(5):317–326

    CAS  PubMed  Google Scholar 

  • Wienhold SM, Lienau J, Witzenrath M (2018) Towards inhaled phage therapy in Western Europe. Viruses 11(3):E295. https://doi.org/10.3390/v11030295

    Article  CAS  Google Scholar 

  • Williamson KE (2011) Soil phage ecology: abundance, distribution, and interactions with bacterial host. In: Witzany G (ed) Biocommunication in soil microorganisms. Springer, Dortrecht, pp 113–136

    Google Scholar 

  • Witzany G (1993) Naur der Sprache – Sprache der Natur. In: Sprachpragmatische Philosophie der Biologie. Koenigshausen & Neumann, Würzburg

    Google Scholar 

  • Witzany G (2000) Life: the communicative structure. BoD, Norderstadt

    Google Scholar 

  • Witzany G (2009) Bacteria and viruses: communal interacting agents. In: Chauhan A, Varma A (eds) A textbook of molecular biotechnology. I.K. International Publishing, New Dehli, pp 905–914

    Google Scholar 

  • Witzany G (2010a) Uniform categorization of biocommunication in bacteria, fungi and plants. World J Biol Chem 1(5):160–180

    PubMed  PubMed Central  Google Scholar 

  • Witzany G (2010b) Biocommunication and natural genome editing. Springer, Dordrecht

    Google Scholar 

  • Witzany G (ed) (2011) Biocommunication in soil microorganisms. Springer, Heidelberg

    Google Scholar 

  • Witzany G (ed) (2012a) Biocommunication of Fungi. Springer, Dordrecht

    Google Scholar 

  • Witzany G (ed) (2012b) Biocommunication of animals. Springer, Dordrecht

    Google Scholar 

  • Witzany G (2014) Biological Self-Organization. IJSSS 3(2):1–11

    Google Scholar 

  • Witzany G (2016a) The biocommunication method: on the road to an integrative biology. Comm Integr Biol 9(2):e1164374

    Google Scholar 

  • Witzany G (2016b) Key levels of biocommunication. In: Gordon R, Seckbach J (eds) Biocommunication: sign-mediated interactions between cells and organisms. World Scientific, Singapore, pp 37–61

    Google Scholar 

  • Witzany G (ed) (2018) Biocommunication of Archaea. Springer, Cham

    Google Scholar 

  • Witzany G (2019) Communication is the main characteristic of life. In: Kolb V (ed) Handbook of astrobiology. CRC Press, Boca Raton, pp 91–105

    Google Scholar 

  • Witzany G, Baluška F (eds) (2012) Biocommunication of plants. Springer, Berlin/Heidelberg

    Google Scholar 

  • Witzany G, Nowacki M (eds) (2016) Biocommunication of ciliates. Springer, Dordrecht

    Google Scholar 

  • Yahara K, Horie R, Kobayashi I et al (2007) Evolution of DNA double-strand break repair by gene conversion: coevolution between a phage and a restriction-modification system. Genetics 176(1):513–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youle M, Haynes M, Rohwer F (2012) Scratching the surface of Biology’s dark matter. In: Witzany G (ed) Viruses: essential agents of life. Springer, Dortrecht, pp 61–81

    Google Scholar 

  • Young R (2002) Bacteriophage holins: deadly diversity. J Mol Microbiol Biotechnol 1:21–36

    Google Scholar 

Download references

Acknowledgement

I want to thank Luis P. Villarreal for helpfull comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenther Witzany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Witzany, G. (2020). What Does Communication of Phages Mean?. In: Witzany, G. (eds) Biocommunication of Phages. Springer, Cham. https://doi.org/10.1007/978-3-030-45885-0_1

Download citation

Publish with us

Policies and ethics