Microwave Remote Sensing Monitoring and Global Climate Change Problems

  • Costas A. Varotsos
  • Vladimir F. Krapivin


The problem of global environmental change is the subject of global ecoinformatics in the context of which information technologies have been developed to ensure the combined use of various data on the past and present state of the Climate-Nature System (CNSS). The creation of a CNSS model based on knowledge and available data, and combined with an adaptive evolutionary concept of geo-information monitoring, which allows for the interconnection of the CNSS model and the global data collection regime, can be considered an important step in global ecoinformatics. As a result, the structure of the CNSS can be optimized to achieve sustainable interaction between nature and human society and to create an international strategy for coordinated use of natural ecosystems.


  1. Alastuey A, Querol X, Rodroguez S, Plana F, Lopez-Soler A, Ruiz C, Mantilla E (2004) Monitoring of atmospheric particulate matter around sources of secondary inorganic aerosol. Atmos Environ 38(30):4979–4992CrossRefGoogle Scholar
  2. Alessio S, Longhetto A, Richiardone R (2004) Evolutionary spectral analysis of European climatic series. Il Nuovo cimento della Società italiana di fisica C 27(1):73–98Google Scholar
  3. Allen M (2002) Climate of the twentieth century: detection of change and attribution of causes. Weather 57(8):296–303CrossRefGoogle Scholar
  4. Andersson E, Kahnert M (2016) Coupling aerosol optics to the MATCH (v5.5.0) chemical transport model and the SALSA (V1) aerosol microphysics module. Geosci Model Dev 9(5):1803–1826CrossRefGoogle Scholar
  5. Andronova NG, Schlesinger ME (2001) Objective estimation of the probability density function for climate sensitivity. J Geophys Res 106(D19):22,605–22,611CrossRefGoogle Scholar
  6. Anisimov O, Reneva S (2006) Permafrost and changing climate: the Russian perspective. Ambio 35:169–175CrossRefGoogle Scholar
  7. Baliunas S (2002) The Kyoto protocol and global warming. Imprimis 31(3):1–7Google Scholar
  8. Bazilevich NI, Rodin LE (1967) Diagrammatic map of producrivity and biological cycle of basic terrestrial plant types. Proc All Union Geogr Soc 99(3):190–194. [in Russian]Google Scholar
  9. Biktash L (2017) Long-term global temperature variations under total solar irradiance, cosmic rays, and volcanic activity. J Adv Res 8(4):329–332CrossRefGoogle Scholar
  10. Bjorkstrom A (1979) A model of CO2 in interaction between atmosphere, oceans and land biota. In: Bolin B (ed) Global carbon cycle, SCOPE 13. Willey, Chichester, pp 403–457Google Scholar
  11. Bolin R, Sukumar R (2000) Global perspective. In: Watson RT, Noble IR, Bolin R et al (eds) Land use, land-use change, and forestry. Cambridge University Press, Cambridge, pp 23–51Google Scholar
  12. Bornstein R (1999) Urban induced convergence zones and air pollution episodes. Preprint Volume, International Conference on Air Quality Management, 15–19 November 1999, Darussalem, Brunei, pp 51–54Google Scholar
  13. Bory A, Biscaye PE, Grousset FE (2003) Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys Res Lett 30(4):16/1–16/4CrossRefGoogle Scholar
  14. Boucher O (2015) Atmospheric aerosols. Springer, DordrechtGoogle Scholar
  15. Bounoua L, Defries R, Collatz GJ, Sellers P, Khan H (2002) Effects of land cover conversion on surface climate. Clim Change 52(1–2):29–64CrossRefGoogle Scholar
  16. Bousquet P, Tyler SC, Peylin P, Van Der Werf GR, Prigent C, Hauglustaine DA, Dlugokencky EJ, Miller JB, Ciais P, White J, Steele LP, Schmidt M, Ramonet M, Papa F, Lathière J, Langenfelds RL, Carouge C, Brunke E-G (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443(7110):439–443CrossRefGoogle Scholar
  17. Brasseur GP (2017) Modeling of atmospheric chemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. Cahill CF (2003) Asian aerosol transport to Alaska during ACE-Asia. J Geophys Res-Atmos 108(D23):ACE 32-1–ACE 32-7CrossRefGoogle Scholar
  19. Chattopadhyay G, Chakraborthy P, Chattopadhyay S (2012) Mann-Kendall trend analysis of tropospheric ozone and its modeling using ARIMA. Theor Appl Climatol 110:321–328CrossRefGoogle Scholar
  20. Chobadian A, Goddard AJH, Gosman AD (1985) Numerical simulation of coastal internal boundary layer developments and a comparison with simple models. In: Wispelaere et al (eds) Air pollution modeling and its application, vol IV. Plenum Press, New York, pp 343–358Google Scholar
  21. Chou M-D, Chan PK, Wang M (2002) Aerososl radiative forcing derived from Sea-WiFS-retrieved aerosol optical properties. J Atmos Sci 59(3):748–757CrossRefGoogle Scholar
  22. Christensen TR, Prentice IC, Kaplan J, Íaxeltine A, Sitch S (1996) Methane flux from northern wetlands and tundra. Tellus B Chem Phys Meteorol 48(5):409–416CrossRefGoogle Scholar
  23. Cihlar J, Denning S, Ahern F, Arino O, Belward A, Bretherton F, Cramer W, Dedieu G, Field C, Francey R, Gommes R, Gosz J, Hibbard K, Igarashi T, Kabat P, Olson D, Plummer S, Rasool I, Ranpach M, Scholes R, Townshend J, Valentini R, Wickland D (2002) Initiative to quantify terrestrial carbon sources and sinks. EOS Trans 83(1):1. 6–7CrossRefGoogle Scholar
  24. Collinz M, Senior CA (2002) Projections of future climate change. Weather 57(8):283–287CrossRefGoogle Scholar
  25. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–496CrossRefGoogle Scholar
  26. Cracknell AP, Varotsos CA (2011) New aspects of global climate-dynamics research and remote sensing. Int J Remote Sens 32(3):579–600CrossRefGoogle Scholar
  27. Cracknell AP, Krapivin VF, Varotsos CA (eds) (2009) Global climatology and ecodynamics: anthropogenic changes to planet earth. Springer/Praxis, ChichesterGoogle Scholar
  28. Degermendzhi AG (2009) New directions in biophysical ecology. In: Cracknell AP, Krapivin VF, Varotsos CA (eds) Global climatology and ecodynamics. Springer/Praxis, Chichester, pp 379–396CrossRefGoogle Scholar
  29. Dementjeva TV (2000) Emission of gases from peat-bog ecosystems. In: Proceedings of the second international methane mitigation conference, June 18–23, 2000, Novosibirsk, p 223Google Scholar
  30. Despres A, Rancillac F, Bouville A (1986) First result of the data processing of the VIth European campaign on remote – sensing of air pollution. In: Wispelaere et al (eds) Air pollution modeling and its application, vol V. Plenum Press, New York, pp 371–382Google Scholar
  31. Ding XL, Li ZW, Zhu JJ, Feng GC, Long JP (2008) Atmospheric effects on InSAR measurements and their mitigation. Sensors (Basel) 8(9):5426–5448CrossRefGoogle Scholar
  32. Doherty OM, Riemer N, Hameed S (2012) Control of Saharan mineral dust transport to Barbados in winter by the Intertropical Convergence Zone over West Africa. J Geophys Res 117:D19117CrossRefGoogle Scholar
  33. Doney SC, Lindsay K, Moore JK (2003) Global ocean carbon cycle modeling. In: Fasham MJR (ed) Ocean biogeochemistry. Springer, Berlin, pp 217–238CrossRefGoogle Scholar
  34. Ebel A, Memmesheimer M, Jakobs HJ (2007) Chemical perturbations in the planetary boundary layer and their relevance for chemistry transport modelling. Bound-Layer Meteorol 125:265–278CrossRefGoogle Scholar
  35. Eliasson B, Riemer P, Wokaun A (1999) Greenhouse gas control technologies. Elsevier, HardbounGoogle Scholar
  36. Ellsaesser HW (2002) The current status of global warming. Energy Environ 13(1):125–129CrossRefGoogle Scholar
  37. Essex C, McKitrick R (2002) Taken by storm. The troubled science, policy and politics of global warming. Key Porter Books, TorontoGoogle Scholar
  38. Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Trans P (1998) A large terrestrial carbon sink in North Amarica implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446CrossRefGoogle Scholar
  39. Filatov NN (2004) Climate of Karelia: variability and impact on water objects and watersheds. Karel Science Centre of RAS, Petrozavodsk. [in Russian]Google Scholar
  40. Folland CK, Renwick JA, Salinger MJ, Mullan AB (2002) Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys Res Lett 29(13):21–21CrossRefGoogle Scholar
  41. Francis D, Eayrs C, Chaboureau J-P, Mote T, Holland DM (2019) A meandering polar jet caused the development of a Saharan cyclone and the transport of dust toward Greenland. Adv Sci Res 16:49–56CrossRefGoogle Scholar
  42. Friedlingstein P, Bopp L, Ciais P, Dufresne JL, Fairhead L, LeTreut H, Monfray P, Orr J (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28:1543–1546CrossRefGoogle Scholar
  43. Fung I (2000) Variable carbon sinks. Science 290(5495):1313–1314CrossRefGoogle Scholar
  44. Gale J, Freund P (2000) Reducing methane emissions to combat global climate change: the role Russia can play. In: Proceedings of the second international methane mitigation conference, June 18–23, 2000, Novosibirsk, p 73Google Scholar
  45. Garcia-Barrón L, Pita MF (2004) Stochastic analysis of time series of temperatures in the south-west of the Iberian Peninsula. Atmosfera 17(4):225–244Google Scholar
  46. Giorgi F, Bi X, Qian Y (2003) Indirect and direct effects of anthropogenic sulfate on the climate of East Asia as simulated with a regional coupled climate-chemistry aerosol model. Clim Chang 58:345–376CrossRefGoogle Scholar
  47. Gregory D, Morcrette J-J, Jakob C, Beljaars ACM, Stockdale T (2000) Revision of convection, radiation and cloud schemes in the ECMWF integrated forecasting system. Qartely J Roy Met Soc 126:1685–1710CrossRefGoogle Scholar
  48. Griggs DJ, Noguer M (2002) Climate change 2001: the scientific basis. Contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change. Weather 57(8):267–269CrossRefGoogle Scholar
  49. Hansen JE, Sato M (2001) Trends of measured climate forcing agents. Proc Natl Acad Sci U S A 98(26):14,778–14,783CrossRefGoogle Scholar
  50. Härkönen S (2011) Estimating forest growth and carbon balance on climate-sensitive forest growth and remote sensing data. In: Proceedings of the COST FP0603 “Modelling forest ecosystems – concepts, data and application”, May 9–13, 2011 Kaprun, Austria, p 63Google Scholar
  51. Hartmann DL (2002) Tropical surprises. Science 295(5556):811–812CrossRefGoogle Scholar
  52. Hassler B, Bodeker GE, Dameris M (2008) Technical note: a new global database of trace gases and aerosols from multiple sources of high vertical resolution measurements. Atmos Chem Phys 8:5403–5421CrossRefGoogle Scholar
  53. Hirose T (2005) Development of the Monsi-Saeki theory on canopy structure and function. Ann Bot 95:483–494CrossRefGoogle Scholar
  54. Holzer M, McKendry IG, Jaffe DA (2003) Springtime trans-Pacific atmospheric transport from east Asia: a transit time probability density function approach. J Geophys Res 108(D22):ACL11/1–ACL11/17CrossRefGoogle Scholar
  55. Houghton RA (1999) The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 518:298–313CrossRefGoogle Scholar
  56. Houghton JT, Yihmi D (eds) (2001) Climate change. The scientific basis, The contribution of WG1 of the IPCC to the IPCC Third Assessment Report. TAR Cambridge University Press, CambridgeGoogle Scholar
  57. Houghton JT, Filho GM, Calander BA, Harris N, Kattenberg A, Maskell K (1996) Climate change 1995: the science of climate change, intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  58. Houghton RA, Skole DL, Nobre CA, Hackler JL, Lawrence K, Chomentowski WH (2000) Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403(6767):301–304CrossRefGoogle Scholar
  59. Hubbard KG, Lin X (2002) Realtime data filtering models for air temperature measurements. Geophys Res Lett 29(10):67/1–67/4CrossRefGoogle Scholar
  60. Hughes GB, Giegengack R, Kritikos HN (1999) Spectral indications of unexpected contributors to фtmospheric CO2 variability? Int J Climatol 19(8):813–820CrossRefGoogle Scholar
  61. Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398(6723):121–126CrossRefGoogle Scholar
  62. IPCC (2001) Climate change 2001: mitigation. Contribution of working group III to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  63. IPCC (2005) IPCC workshop on new emission scenarios (Meeting Report, 29 June–1 July 2005, Laxemburg, Austria). WMO/UNEP, Laxemburg, AustriaGoogle Scholar
  64. IPCC (2007) Climate change 2007: the physical science basis. WMO/UNEP, GenevaGoogle Scholar
  65. Jepma C, Meijer H, Uiterkamp TS, Weesie P (2001) Editorial. Energy Environ 12(5–6):III–IXCrossRefGoogle Scholar
  66. Joos F, Plattner G-K, Stocker TF, Marchal O, Schmittner A (1999) Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284(5413):464–468CrossRefGoogle Scholar
  67. Katz RW (2002) Techniques for estimating uncertainty in climate change scenarios and impact studies. Clim Res 20:167–185CrossRefGoogle Scholar
  68. Kelley JJ (1987) Carbon dioxide in the Arctic environment. Int J Earth Sci 35(2):341–354Google Scholar
  69. Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191CrossRefGoogle Scholar
  70. Kerr RA (2002) Reducing uncertainties of global warming. Science 295(5552):29–31CrossRefGoogle Scholar
  71. Knobelspiesse K, Sreeja Nag S (2018) Remote sensing of aerosols with small satellites in formation flight. Atmos Meas Tech 11:3935–3954CrossRefGoogle Scholar
  72. Kondratyev KY (1998) Multidimensional global change. Wiley/PRAXIS, ChichesterGoogle Scholar
  73. Kondratyev KY (1999) Climatic effects of aerosols and clouds. Springer/PRAXIS, ChichesterGoogle Scholar
  74. Kondratyev KY, Varotsos CA (1995) Atmospheric greenhouse effect in the context of global climate change. Il Nuovo Cimento C 18(2):123–151CrossRefGoogle Scholar
  75. Kondratyev KY, Grigoryev Al A, Varotsos CA (2002a) Environmental disasters: anthropogenic and natural. Springer/PRAXIS, ChichesterGoogle Scholar
  76. Kondratyev KY, Krapivin VF, Phillips GW (2002b) Global environmental change: modelling and monitoring. Springer, BerlinCrossRefGoogle Scholar
  77. Kondratyev KY, Krapivin VF, Phillips GW (2003a) Arctic Basin pollution dynamics. In: Bobylev LP, Kondratyev KY, Johannessen OM (eds) Arctic environment variability in the context of global change. Springer/Praxis, Chichester, pp 309–362Google Scholar
  78. Kondratyev KY, Krapivin VF, Varotsos CA (2003b) Global carbon cycle and climate change. Springer/PRAXIS, ChichesterGoogle Scholar
  79. Kondratyev KY, Krapivin VF, Savinykh VP, Varotsos CA (2004) Global ecodynamics: a multidimensional analysis. Springer-Praxis, ChichesterCrossRefGoogle Scholar
  80. Kondratyev KY, Ivlev LS, Krapivin VF, Varotsos CA (2006) Atmospheric aerosol properties: Formation, processes and impacts. Springer/PRAXIS, ChichesterGoogle Scholar
  81. Kosaka Y, Xie S-P (2013) Recent warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407CrossRefGoogle Scholar
  82. Krapivin VF, Shutko AM (2012) Information technologies for remote monitoring of the environment. Springer/Praxis, ChichesterCrossRefGoogle Scholar
  83. Krapivin VF, Varotsos CA (2008) Biogeochemical cycles in globalization and sustainable development. Springer/Praxis, ChichesterGoogle Scholar
  84. Krapivin VF, Varotsos CA (2016) Modelling the CO2 atmosphere-ocean flux in the upwelling zones using radiative transfer tools. J Atmos Sol Terr Phys 150–151:47–54CrossRefGoogle Scholar
  85. Krapivin VF, Varotsos CA, Soldatov VY (2015) New Ecoinformatics tools in environmental science: applications and decision-making. Springer, LondonCrossRefGoogle Scholar
  86. Krapivin VF, Varotsos CA, Nghia BQ (2017a) A modeling system for monitoring water quality in lagoons. Water Air Soil Pollut 228(397):1–12Google Scholar
  87. Krapivin VF, Varotsos CA, Soldatov VY (2017b) The Earth’s population can reach 14 billion in the 23rd century without significant adverse effects on survivability. Int J Environ Res Public Health 14(8):3–18CrossRefGoogle Scholar
  88. Krapivin VF, Varotsos CA, Soldatov VY (2017c) Simulation results from a coupled model of carbon dioxide and methane global cycles. Ecol Model 359:69–79CrossRefGoogle Scholar
  89. Krapivin VF, Nitu C, Varotsos CA (2019) Microwave remote sensing tools and ecoinformatics. Matrix Rom, BucharestGoogle Scholar
  90. Landsberg J (2011) Modelling forest ecosystems: state of the art, challenges, and future directions. Can J For Res 33:385–397CrossRefGoogle Scholar
  91. Ledley TS, Sundquist ET, Schwartz SE, Hall DK, Fellows JD, Killeen TL (1999) Climate change and greenhouse. Eos 80(39):453–474CrossRefGoogle Scholar
  92. Lenoble J, Remer L, Tanre D (eds) (2013) Aerosol remote sensing. Springer, Berlin/HeidelbergGoogle Scholar
  93. Levinson DH, Waple AM (2004) State of the climate in 2003. Bull Am Meteorol Soc 85(6):1–72CrossRefGoogle Scholar
  94. Lieth H (1985) A dynamic model of the global carbon flux through the biosphere and its relations to climatic and soil parameters. Int J Biometeorol 29:17–31Google Scholar
  95. Lindsey R, Simmon R (2003) Escape from the Amazon. Earth Obs 15(2):8–13Google Scholar
  96. Luo C, Mahowald NM, del Corral J (2003) Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. J Geophys Res Atmos 108(D15):AAC5/11–AAC5/21Google Scholar
  97. Manizza M, Follows MJ, Dutkiewicz S, Menemenlis D, Hill CN (2013) Changes in the Arctic Ocean CO2 sink (1996–2007): a regional model analysis. Glob Biogeochem Cycles 27:1108–1118CrossRefGoogle Scholar
  98. Maoa KB, Maa Y, Xiaa L, Chenb WY, Shenc XY, Hed TJ, Xue TR (2014) Global aerosol change in the last decade: an analysis based on MODIS data. Atmos Environ 94:680–686CrossRefGoogle Scholar
  99. Markowicz KM, Flatau PJ, Vogelmann AM, Quinn PK (2003) Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere. Q J R Meteorol Soc 129:2927–2947CrossRefGoogle Scholar
  100. Martin BD, Fuelberg HE, Blake NJ, Crawford JH, Logan JA, Blake DR, Sachse GW (2003) Long-range transport of Asian outflow to the equatorial Pacific. J Geophys Res 108(D2):PEM5/1–PEM5/18Google Scholar
  101. Matsui H, Mahowald N (2017) Development of a global aerosol model using a two-dimensional sectional method: 2. Evaluation and sensitivity simulations. JAMES 9(4):1887–1920Google Scholar
  102. Mayers JC (2004) London’s wettest summer and wettest year – 1903. Weather 59(10):274–278CrossRefGoogle Scholar
  103. McKitrick R (2002) Trends in data on air temperature obtained with internal correlations taken into account. Izv Russ Geogr Soc 134(3):16–24. (in Russian)Google Scholar
  104. Mejer HAJ (2001) The science of greenhouse gases: uncertainties in sources and sinks, and implications for verification. Energy Environ 12(5–6):425–446CrossRefGoogle Scholar
  105. Melnikova IN, Vasilyev AV (2004) Short-wave solar radiation in the earth’s atmosphere. Springer, Berlin/HeidelbergGoogle Scholar
  106. Metting FB, Smith JL, Amthor JS, de Izaurral RC (2001) Science needs and new technology for increasing soil carbon sequestration. Clim Change 51(1):1–34CrossRefGoogle Scholar
  107. Metzger RA, Benford G (2001) Sequestering of atmospheric carbon through permanent disposal of crop residue. Clim Change 49(1–2):11–19CrossRefGoogle Scholar
  108. Mintzer IM (1987) A matter of degrees: the potential for controlling the greenhouse effect, World Resources Institute Research report no. 15. World Resources Institute, Washington, DCGoogle Scholar
  109. Mohr T, Bridge J (2003) The evolution of the integrated global Earth observing system. Stud Earth Space 1:64–73Google Scholar
  110. Monahan EC, Dam HG (2001) Bubbles: an estimate of their role in the global oceanic flux of carbon. J Geophys Res 106(C5):9377–9384CrossRefGoogle Scholar
  111. Monin AS, Obukhov AM (1954) Spatial characteristics of turbulence in the surface layer of the atmosphere. Dokl USSR Acad Sci 93:223–226. [in Russian]Google Scholar
  112. Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291(5501):112–114CrossRefGoogle Scholar
  113. Nefedova EI, Tarko AM (1993) Study of the global carbon cycle using the zonal model in the atmosphere-ocean system. Proc Russ Acad Sci 333(5):645–647. [in Russian]Google Scholar
  114. Newell R, Pizer W (2002) Discounting the benefits of climate change policies using uncertain rates. Resources 146:15–20Google Scholar
  115. Nielsen TT (1999) Characterization of fire regimes in the experiment for regional sources and sinks of oxidants (EXPRESSO) study area. J Geophys Res 104(D23):30713–30723CrossRefGoogle Scholar
  116. Nilsson S, Jonas M, Obersteiner M (2002) COP-6: a healing shock? An editorial essay. Clim Change 52(1–2):25–28Google Scholar
  117. Nitu C, Krapivin VF, Mkrtchyan FA, Soldatov VY, Dumitrascu A (2019) Information-modeling instrumental system for the water resource diagnostics. In: Proceedings of the 22nd international conference on Control Systems and Computer Science (CSCS), May 29–31, 2019, Bucharest, Romania, p 471Google Scholar
  118. Ondov JM, Buckley TJ, Hopke PK, Ogulei D, Parlange MB, Rogge WF, Squibb KS, Johnston MV, Wexler AS (2006) Baltimore supersite: highly time- and size-resolved concentrations of urban PM2.5 and its constituents for resolution of sources and immune responses. Atmos Environ 40:224–237CrossRefGoogle Scholar
  119. Panikov NS, Dedysh SN (2000) Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): winter fluxes and thow activation dynamics. Glob Biogeochem Cycles 14:1071–1080CrossRefGoogle Scholar
  120. Parrish D, Law K (2003) Intercontinental transport and chemical transformation (ITCT-Lagrangian – 2k4). J Geophys Res 108(D15):8–13Google Scholar
  121. Pavolonis MJ, Key JR (2003) Antarctic cloud radiative forcing at the surface estimated from the AVHRR Polar Pathfinder and ISCCPDI data sets, 1985–93. J Appl Meteorol Climatol 42:827–840CrossRefGoogle Scholar
  122. Pielke RA Sr (2001) Carbon sequestration – The need for an integrated climate system approach. Bull Am Meteorol Soc 82(11):20–21Google Scholar
  123. Pielke RA Sr (2002) Overlooked issues in the U.S. national climate and IPCC assessments. Clim Change 52(1–2):1–11Google Scholar
  124. Pittock AB (2002) What we know and don’t know about climate change: reflections on the IPCC TAR. Clim Change 53(4):393–411CrossRefGoogle Scholar
  125. Podgorny IA, Ramanathan VA (2001) Modeling study of the direct effect of aerosols over the tropical Indian Ocean. J Geophys Res 104(20):24,097–24,104CrossRefGoogle Scholar
  126. Raaschou-Nielsen O, Hertel O, Vignati E, Berkowitcz R, Jensen SS, Larsen VB, Lohse C (2000) Evaluation of an air pollution model with respect to use in epidemiologic studies; comparison with measured levels of nitrogen dioxide and benzene. J Expo Anal Environ Epidemiol 10:4–14CrossRefGoogle Scholar
  127. Ramanathan V, Coakley JA (1978) Climate modelling through radiative – convective models. Rev Geophys 16:465–489CrossRefGoogle Scholar
  128. Reid PC (2001) Climate change and the continuous plankton recorder survey. Mar Obs 71(353):118–123Google Scholar
  129. Reid JS, Kinney JE, Westphal DL, Holben BN, Welton EJ, Tsay S-C, Eleuterio OP, Campbell JR, Christopher SA, Colarco PR, Jonsson HH, Livingston JM, Maring HB, Meier ML, Pilewskie P, Prospero JM, Reid EA, Remer LA, Russel PB, Savoie DL, Smirnov A, Tanré D (2003) Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE). J Geophys Res Atmos 108(D19):PRD2/1–PRD2/27Google Scholar
  130. Reilly J, Stone PH, Forest CE, Webster MD, Jacoby HD, Prinn RG (2001) Climate change: uncertainty and climate change assessments. Science 293(5529):430–431CrossRefGoogle Scholar
  131. Romashkin PA, Hurst DF, Elkins JW, Dutton GS, Wamsley PR (1999) Effect of the tropospheric trend on the stratospheric tracer-tracer correlations: methyl chloroform. J Geophys Res 104(D21):26,643–26,652CrossRefGoogle Scholar
  132. Rosa LP, Ribeiro SK (2001) The present, past, and future contributions to global warming of CO2 emissions from fuels. Clim Change 48(2–4):289–308CrossRefGoogle Scholar
  133. Rossow WB (2003) Workshop on climate system feedbacks. GEeWEX News 13(1):12–14Google Scholar
  134. Schönwiese C-D (2002) Klima in der Diskussion. AFZ/Wald 57(8):386–389Google Scholar
  135. Scorer RS (1997) Dynamics of meteorology and climate. Wiley, New YorkGoogle Scholar
  136. Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509CrossRefGoogle Scholar
  137. Shamir NJ, Veizer J (2003) Celestial driver of Phanerozoic climate? GSA Today 13(7):4–10CrossRefGoogle Scholar
  138. Sharkov EA (2003) Passive microwave remote sensing of the Earth. Physical Foundation. Springer, LondonGoogle Scholar
  139. Shi Z, Xing T, Guang J, Xue Y, Che Y (2019) Aerosol optical depth over the Arctic snow-covered regions derived from dual-viewing satellite observations. Remote Sens 11(8):891CrossRefGoogle Scholar
  140. Siegenthaler V (1993) Modelling the present-day oceanic carbon cycle. In: Heimann M (ed) The global carbon cycle, NATO ASI Series, 15. Springer, Berlin, pp 387–395Google Scholar
  141. Sinik N, Loncar E, Vidic S (1985) The use of field data in average wet deposition modeling. In: Wispelaere et al (eds) Air pollution modeling and its application, vol IV. Plenum Press, New York, pp 155–161Google Scholar
  142. Smemo KA, Yavitt JB (2011) Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 8:779–793CrossRefGoogle Scholar
  143. Smith SL, Lewkowicz A, Burn C, Allard M, Throop J (2010) The thermal state of permafrost in Canada – results from the International Polar Year. GEO2010:1217–1221Google Scholar
  144. Stohl A (2004) Intercontinental transport of air pollution. Springer, LondonGoogle Scholar
  145. Stohl A, Eckhardt S, Forster C, James P, Spichtinger N (2003a) On the pathways and timescales of intercontinental air pollution transport. J Geophys Res 108(D23):ACH6/1–ACH6/17CrossRefGoogle Scholar
  146. Stohl A, Huntrieser H, Richter A, Beirle S, Cooper OR, Eckhardt S, Forster C, James P, Spichtinger N, Wenig M, Wagner T, Burrows JR, Platt U (2003b) Rapid intercontinental air pollution transport associated with a meteorological bomb. Atmos Chem Phys 3:969–985CrossRefGoogle Scholar
  147. Strassmann KM, Joos F (2018) The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle–climate simulations. Geosci Model Dev 11:1887–1908CrossRefGoogle Scholar
  148. Tan Z, Zhuang Q (2015) Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environ Res Lett 10(5):1–9CrossRefGoogle Scholar
  149. Tang G, Zheng J, Xu X, Yang Z, Graham DE, Gu B, Painter SL, Thornton PE (2016) Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms. Biogeosciences 13:5021–5041CrossRefGoogle Scholar
  150. Tarko AM (2003) Analysis of global and regional changes in biogeochemical carbon cycle: a spatially distributed model, Interim report, IR-03-041. IIASA, LaxenburgGoogle Scholar
  151. Tomasi С, Kokhanovsky AA, Lupi A, Ritter C, Smirnov A, O’Neill NT, Stone RS, Holben BN, Nyeki S, Wehrli C, Stohl A, Mazzola M, Lanconelli C, Vitale V, Stebel K, Aaltonen V, Leeuw G, Rodriguez E, Herber AB, Radionov VF, Zielinski T, Petelski T, Sakerin SM, Kabanov DM, Xue Y, Mei L, Istomina L, Wagener R, McArthur B, Sobolewski PS, Kivi R, Courcoux Y, Larouche P, Broccardo S, Piketh SJ (2015) Aerosol remote sensing in polar regions. Earth-Sci Rev 140:108–157CrossRefGoogle Scholar
  152. Toth F, Bruckner T, Füssel H-M, Helm C, Hooss G, Leimbach M, van Minnen J, Petschel-Held G, Schellnhuber H-J, Tothne-Hizsnyik E (2000) ICLIPS – Integrierte Abschätzung von Klimaschutzstrategien: methodisch-naturwissenschaftliche Aspekte, Research Report 01 LK 9605/0. Federal Ministry for Science and Research, Bonn. [in German]Google Scholar
  153. Tsushima Y, Manabe S (2001) Influence of cloud feedback on annual variation global mean surface temperature. J Geophys Res 106(D19):22,646–22,655CrossRefGoogle Scholar
  154. Varotsos CA, Krapivin VF (2017) A new big data approach based on geoecological information-modeling system. Big Earth Data 1(1–2):47–63CrossRefGoogle Scholar
  155. Varotsos CA, Nitu C, Krapivin VF (2018) Global ecoinformatics: theory and applications. Matrix ROM, BucharestGoogle Scholar
  156. Vogelmann AM, Flatau PJ, Szcordrak M, Markowicz KM, Minnett PJ (2003) Observations of large aerosol infrared forcing at the surface. Geophys Res Lett 30(12):1655CrossRefGoogle Scholar
  157. Wang H, Christiansen JH (1986) A reentry plume fumigation model. In: De Wispelaere C et al (eds) Air pollution modeling and its application, vol V. Plenum Press, New York, pp 565–579Google Scholar
  158. Wang P-H, Minnis P, Wielicki BA, Wong T (2003) Characteristics of the 1997/1998 El Niño cloud distributions from SAGE-II observations. J Geophys Res 108(D1):5/1–5/11CrossRefGoogle Scholar
  159. Wang L, Gong W, Ma Y, Zhang M (2013) Modeling regional vegetation NPP variations and their relationships with climate parameters in Wuhan, China. Earth Interact 17:1–4CrossRefGoogle Scholar
  160. Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) (2000) Land use, land-use change, and forestry. Cambridge University Press, CambridgeGoogle Scholar
  161. Weaver CP (2003) Efficiency of storm tracks an important climate parameter? The role of cloud radiative forcing in poleward heat transport. J Geophys Res 108(D1):5/1–5/6CrossRefGoogle Scholar
  162. Widmann M, Jones JM, von Storch H (2004) Reconstruction of large-scale atmospheric circulation and data assimilation in paleoclimatology. PAGES News 12(2):12–13CrossRefGoogle Scholar
  163. Williams RG, Follows MJ (2011) Ocean dynamics and the carbon cycle. Massachusetts Institute of Technology, Cambridge, MACrossRefGoogle Scholar
  164. Wofsy SC (2001) Climate change: where has all the carbon gone? Science 292(5525):2261–2262CrossRefGoogle Scholar
  165. WSSD (2003) Science and technology for sustainable development, a G8 Action Plan. World summit on sustainable development, 4 September 2002 JohanesburgGoogle Scholar
  166. WSSD (2018) Sustainable development and climate change. 15–17 February 2018 New Delphy, The Energy and Resources Institute.
  167. Wuebbles D (2002) Oversimplifying the greenhouse. An editorial essay. Clim Change 52(4):3240–3245CrossRefGoogle Scholar
  168. Xu S, Jaffe P, Mauzerall DL (2007) A process-based model for methane emission from flooded rice paddy systems. Ecol Model 205:475–491CrossRefGoogle Scholar
  169. Xue Y, He XW, Xu H, Guang J, Guo JP, Mei LL (2014) China Collection 2.0: the aerosol optical depth dataset from the synergetic retrieval of aerosol properties algorithm. Atmos Environ 95:45–58CrossRefGoogle Scholar
  170. Yabe T, Höller R, Tohno S, Kadahara M (2003) An aerosol climatology at Kyoto: observed local radiative forcing and columnar optical properties. J Appl Meteorol Climatol 42:841–850CrossRefGoogle Scholar
  171. Zender CS, Bian H, Newman D (2003) Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. J Geophys Res 108(D14):4416–4423CrossRefGoogle Scholar
  172. Zhou X, Chang N-B, Li S (2009) Applications of SAR interferometry in Earth and environmental science research. Sensors 9:1876–1912CrossRefGoogle Scholar
  173. Zlatev Z, Chrisensen J, Hov OA (1992) Eulerian air pollution model for Europe with nonlinear chemistry. J Atmos Chem 15:1–37CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Costas A. Varotsos
    • 1
  • Vladimir F. Krapivin
    • 2
  1. 1.National and Kapodistrian University of Athens (NKUA)AthensGreece
  2. 2.Institute of Radio-Engineering and ElectronicsFryazinoRussia

Personalised recommendations