Skip to main content

Space Methods and Monitoring Tools for the Investigation of Aquatic Systems

  • Chapter
  • First Online:
  • 408 Accesses

Abstract

Aquatic systems, in their broadest sense, include lakes, ponds, wetlands, seas and oceans. The objectives and priorities of remote monitoring of aquatic systems include numerous problems associated with physical, ecological and hydrochemical characteristics for the detection of various processes such as the tropical cyclone onset, the aquatic weed and algae control, and the understanding of their role in climate change. Aquatic ecosystems are critical components of the global environment as important contributors to biodiversity and ecological productivity. Their health is directly and indirectly controlled by human activities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aksenov Y (2016) Arctic pathways of Pacific water: Arctic Ocean Model intercomparison experiments. Journal of Geophysical Research-Oceans 121(1):27–59

    Article  Google Scholar 

  • Aksenov Y, Coward AC (2001) The Arctic Ocean circulation as simulated in a very high-resolution global ocean model (OCCAM). Annals of Glaciology 33:567–576

    Article  Google Scholar 

  • AMAP (2009) Radioactivity in the Arctic. Arctic Monitoring and Assessment Programme, Oslo

    Google Scholar 

  • Antcibor I, Eschenbach A, Zubrzycki S, Kutzbach L, Bolshiyanov D, Pfeiffer E-M (2014) Trace metal distribution in pristine permafrost-affected soils of the Lena River delta and its hinterland, northern Siberia, Russia. Biogeosciences 11:1–15

    Article  Google Scholar 

  • Aota M, Shirasawa K, Krapivin VF, Mkrtchyan FA (1991) The system for data processing in Okhotsk Sea monitoring. In: Proceedings of the sixth international symposium on Okhotsk Sea and Sea Ice, 3–6 February 1991, Mombetsu, Hokkaido, Japan. Okhotsk Sea and Cold Ocean Research Association, Mombetsu, pp 317–318

    Google Scholar 

  • Aota M, Shirasawa K, Krapivin VF, Mkrtchyan FA (1992) Simulation model of the Okhotsk Sea geoecosystem. In: Proceedings of the seventh international symposium on Okhotsk Sea and Sea Ice, 2–5 February 1992, Mombetsu, Hokkaido, Japan. Okhotsk Sea & Cold Ocean Research Association, Mombetsu, pp 311–313

    Google Scholar 

  • Aota M, Shirasawa K, Krapivin VF, Mkrtchyan FA (1993) A project of the Okhotsk Sea GIMS. In: Proceedings of the eigth international symposium on Okhotsk Sea and sea ice, 1–5 February 1993, Mombetsu, Hokkaido, Japan. Okhotsk Sea & Cold Ocean Research Association, Mombetsu, pp 498–500

    Google Scholar 

  • Belkin IM, Cornillon PC (2004) Surface thermal fronts of the Okhotsk Sea. Physical Oceanography 2(1–2):6–19

    Google Scholar 

  • Bobylev LP, Kondratyev KY, Johannessen OM (eds) (2003) Arctic environment variability in the context of global change. Springer/Praxis, Chichester

    Google Scholar 

  • Bortnik VN, Chistiayeva SP (1990) The Aral Sea. Hydrometeoizdat, Leningrad. [in Russian]

    Google Scholar 

  • Bortnik VN, Dauletiyarov KZ (1985) Numerical modelling of circulation of the Aral Sea waters (36 pp.). Preprint of Computer Centre, USSR Academy of Sciences, Moscow. [in Russian]

    Google Scholar 

  • Bortnik VN, Lopatina SA, Krapivin VF (1994) A simulation system to study the Aral Sea hydrophysical fields. Meteorology Hydrology 9:102–106. [in Russian]

    Google Scholar 

  • Bras RL (1990) Hydrology. Addison-Wesley, New York

    Google Scholar 

  • Bring A, Fedorova I, Dibike Y, Hinzman L, Mård J, Mernild SH, Prowse T, Semenova O, Stuefer SL, Woo M-K (2016) Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. Journal of Geophysical Research 121(3):621–649

    Google Scholar 

  • Chen X, Bai J, Luo G, Li J, Li BL (2013) Changes in land use/land cover and ecosystem services in Central Asia during 1990–2009. Current Opinion in Environmental Sustainability 5(1):116–127

    Article  Google Scholar 

  • Cheng B, Zhao J, Vihma T (2015) Detection of snow and ice thickness from temperature profiles of unmanned ice mass blance buoys. In: Proceedings of the 30th International Symposium on Okhotsk Sea ans Sea Ice, 15–19 February 2015, Mombetsu, Hokkaido, Japan. The Okhotsk Sea & Cold Ocean Research Association, Mombetsu, pp 203–206

    Google Scholar 

  • Chukhlantsev, A. A., Golovachev, V. P., Krapivin, V. F., & Shutko, A. M. (2004). A remote sensing-based modelling system to study the Aral-Caspian water regime. In Proceedings of the 25th ACRS (Asian Conference on Remote Sensing), 22–26 November 2004, Chiang Mai, Thailand, Vol. 1, pp. 506–511

    Google Scholar 

  • Chumchean S, Bunthai W (2011) Testing efficacy of rainmaking activities in the northeast of Thailand. Proceedings of the 10th WMO Scientific Conference on Weather Modification, 4–6 October 2011, Bali, Indonezia. WMO, pp. 185–188

    Google Scholar 

  • Chumchean S, Hanchoowong R, Bunthai W (2010) Comparison between rainmaking and natural rainfall in the northeastern part of Thailand. 5th APHW Conference, Hanoi, Vietnam, 8–10 November 2010

    Google Scholar 

  • Cousteau JY (1963) The living sea. Harper Collins, Paris

    Google Scholar 

  • Cracknell AP, Krapivin VF, Varotsos CA (eds) (2009) Global climatology and ecodynamics: Anthropogenic changes to planet Earth. Springer/Praxis, Chichester

    Google Scholar 

  • Duarte CM, Agustí S, Wassmann P, Arrieta JM, Alcaraz M, Coello A, Marbà N, Hendriks IE, Holding J, García-Zarandona I, Kritzberg E, Vaqué D (2012) Tipping elements in the Arctic Marine Ecosystem. Ambio 41(1):44–55

    Article  Google Scholar 

  • Dukhovny V, Sokolov V (2003) Lessons on cooperating building to manage water conflicts in the Aral Sea Basin. Scientific-Information Center of the Interstate Commission for Water Coordination in Central Asia. UNESCO, Paris

    Google Scholar 

  • Dukhovny VA, Stulina G (2001) Strategy of trans-boundary return flow use in the Aral Sea basin. Desalination 139:299–304

    Article  Google Scholar 

  • Edwards AM, Brindley J (1999) Zooplankton mortality and the dynamical behaviour of plankton population Models. Bulletin of Mathematical Biology 61:303–339

    Article  Google Scholar 

  • Fernández-Méndez M, Katlein C, Rabe B, Nicolaus M, Peeken I, Bakker K, Flores H, Boetius A (2015) Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012. Biogeosciences 12:3525–3549

    Article  Google Scholar 

  • Fisher JA (2011) Atmospheric pollution in the Arctic: sources, transport, and chemical processing. Doctor of Philosophy Dissertation. Harvard University. The Department of Earth and Planetary Sciences, Cambridge, MA

    Google Scholar 

  • Fouest VL, Babin M, Tremblay J-E (2013) The fate of riverine nutrients on Arctic shelves. Biogeosciences 10:3661–3677

    Article  Google Scholar 

  • Ginzburg AI, Kostianoy AG, Sheremet NA, Kravtsova VI (2010) Satellite monitoring of the Aral Sea region. In: Kostianoy AG, Kosarev AN (eds) The Aral Sea environment, vol XIV. Springer, Berlin, pp 147–179

    Chapter  Google Scholar 

  • Grankov AG, Milshin AA (2010) Microwave radiation of the ocean-atmosphere: Boundary heat and dynamic interaction. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Harms IH, Karcher MJ, Dethleff D (2000) Modelling Siberian river runoff – implications for contaminant transport in the Arctic Ocean. Journal of Marine Systems 27:95–115

    Article  Google Scholar 

  • Herman A (2016) Discrete-element bonded-particle sea ice model DESIgn, version 1.3. Model description and implementation. Geoscientific Model Development 9:1219–1241

    Article  Google Scholar 

  • Hölemann JA, Schirmacher M, Prange A (2005) Seasonal variability of trace metals in the Lena River and the southeastern Laptev Sea: Impact of the spring freshet. Global Planet Change 48:112–125

    Article  Google Scholar 

  • Hongpin L, Guanglin L, Weifeng P, Jie S, Qiuwei B (2015) Real-time remote monitoring system for aquaculture water quality. International Journal of Agricultural and Biological Engineering 8(6):136–143

    Google Scholar 

  • Hsu SM, Ni C-F, Hung P-F (2002) Assessment of three infiltration formulas based on model fitting on Richards equation. Journal of Hydrologic Engineering 7(5):373–379

    Article  Google Scholar 

  • Ide K (2018) Situation in the Arctic Region and Japan’s Arctic Policy. In: Proceedings of the 33rd International Symposium on Okhotsk Sea & Polar Oceans 2018, 18–21 February 2018, Mombetsu, Hokkaido, Japan. OSPORA, Mombetsu, pp 1–3

    Google Scholar 

  • Johannessen OM, Volkov VA, Pettersson LH, Maderich VS, Zheleznyak MJ, Gao Y, Bobylev LP, Stepanov AV, Neelov IA, Tishkov VP, Nielsen SP (2010) Radioactivity and pollution in the Nordic seas and Arctic Region: Observations, modeling, and simulations. Springer/Praxis, Chichester

    Book  Google Scholar 

  • Kaevitser VI, Krapivin VF, Soldatov VY (2013) A new information-modeling technology for monitoring environment in the Okhotsk Sea. In: Proceedings of the 28-th International Symposium on Okhotsk Sea & Sea Ice. 17–21 Fedruary 2013.Mombetsu, Hokkaido, Japan. The Okhotsk Sea & Cold Ocean Research Association, Mombetsu, pp 295–299

    Google Scholar 

  • Kelley, J. J., & Krapivin, V. F. (2004). Biocomplexity problem related to the Okhotsk Sea fisheries. In Proceedings of the international conference DAS, 27–29 June 2004, Suceava, Romania, pp. 52–57

    Google Scholar 

  • Kleiber M (1932) Body size and metaboliz. Hilgardia 6:315–332

    Article  Google Scholar 

  • Klein I, Gessner U, Kuenzer C (2012) Regional land cover mapping and change detection in Central Asia using MODIS time-series. Applied Geography 35(1–2):219–234

    Article  Google Scholar 

  • Klemas V (2012) Remote sensing of coastal and ocean currents: An overview. Journal of Coastal Research 28(3):576–586

    Article  Google Scholar 

  • Knies JL, Kingsolver JG (2010) Erroneous Arrhenius: Modified Arrhenius model best explains the temperature dependence of ectotherm fitness. American Naturalist 176(2):227–233

    Article  Google Scholar 

  • Komuro Y (2014) The impact of surface mixing on the arctic river water distribution and stratification in a Global Ice-Ocean Model. Journal of Climate 27:4359–4370

    Article  Google Scholar 

  • Kondratyev KY, Krapivin VF (2001) Biocomplexity and global geographic information monitoring. Mapping Sciences and Remote Sensing 38(4):260–271

    Article  Google Scholar 

  • Kondratyev KY, Grigoryev AA, Varotsos CA (2002a) Environmental disasters: Anthropogenic and natural. Springer/PRAXIS, Chichester

    Google Scholar 

  • Kondratyev KY, Krapivin VF, Phillips GW (2002b) Global environmental change: Modelling and monitoring. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Kondratyev KY, Krapivin VF, Phillips GW (2003a) Arctic Basin pollution dynamics. In: Bobylev LP, Kondratyev K, Johannessen OM (eds) Arctic environment variability in the context of global change. Springer/Praxis, Chichester, pp 309–362

    Google Scholar 

  • Kondratyev KY, Krapivin VF, Varotsos CA (2003b) Global carbon cycle and climate change. Springer/PRAXIS, Chichester

    Google Scholar 

  • Kondratyev KY, Krapivin VF, Savinykh VP, Varotsos CA (2004) Global ecodynamics: A multidimensional analysis. Springer-Praxis, Chichester

    Book  Google Scholar 

  • Kondratyev KY, Ivlev LS, Krapivin VF, Varotsos CA (2006) Atmospheric aerosol properties: Formation, processes and impacts. Springer/PRAXIS, Chichester

    Google Scholar 

  • Kornakov VI, Borovets SA, Bostandzhoglo AA (1968) Water balance and forecast for a drop in Aral Sea level. Hydroproject, Tashkent. [in Russian]

    Google Scholar 

  • Krapivin VF (1996) The estimation of the Peruvian current ecosystem by a mathematical model of biosphere. Ecological Modelling 91:1–14

    Article  Google Scholar 

  • Krapivin VF (2009) Technology for the synthesize of geoecological information-modeling systems (GIMS-technology). Journal of Science & Technology 1:47–55

    Google Scholar 

  • Krapivin VF (2015) The Okhotsk Sea biocomplexity model. In: Proceedings of the 30th international symposium on Okhotsk Sea & sea ice. 15–19 February 2015. Mombetsu, Hokkaido, Japan. The Okhotsk Sea & Cold Ocean Research Association, Mombetsu, pp 223–226

    Google Scholar 

  • Krapivin VF, Mkrtchyan FA (2016a) Constructive method for the vegetation microwave monitoring. Journal of Science & Technology 9(8):47–53

    Google Scholar 

  • Krapivin VF, Mkrtchyan FA (2016b) Spectroellipsometric tools for the water quality diagnostics in the Sea of Okhotsk. In: Proceedings of the 31st international symposium on Okhotsk Sea & sea ice, 21–24 February 2016, Mombetsu, Hokaido, Japan. The Okhotsk Sea & Cold Ocean Research Association (OSCORA), Mombetsy, pp 101–104

    Google Scholar 

  • Krapivin VF, Phillips GW (2001) A remote sensing based expert system to study the Aral-Caspian aqua geosystem water regime. Remote Sensing of Environment 75:201–215

    Article  Google Scholar 

  • Krapivin VF, Soldatov VY (2009) Biocomplexity problem related to the Okhotsk Sea ecosystem. In: Proceedings of the 24th international symposium on Okhotsk Sea and sea ice, 15–20 February 2009, Mombetsu, Hokkaido, Japan, The Okhotsk Sea & Cold Ocean Research Association, Mombetsu, pp 143–146

    Google Scholar 

  • Krapivin VF, Varotsos CA (2007) Globalization and sustainable development. Springer/Praxis, Chichester

    Google Scholar 

  • Krapivin VF, Varotsos CA (2008) Biogeochemical cycles in globalization and sustainable development. Springer/Praxis, Chichester

    Google Scholar 

  • Krapivin VF, Shutko AM (2012) Information technologies for remote monitoring of the environment. Springer/Praxis, Chichester, UK, 498 pp

    Book  Google Scholar 

  • Krapivin VF, Cherepenin VA, Phillips GW, August RA, Pautkin AY, Harper MJ, Tsang FY (1998) An application of modeling technology to the study of radionuclear pollutants and heavy metals dynamics in the Angara-Yenisey river system. Ecological Modelling 111(2–3):121–134

    Article  Google Scholar 

  • Krapivin VF, Varotsos CA, Soldatov VY (2015a) New ecoinformatics tools in environmental science: Applications and decision-making. Springer, London

    Book  Google Scholar 

  • Krapivin VF, Mkrtchyan FA, Tuyet DV (2015b) Constructive method for the vegetation microwave monitoring. In: Proceedings of the international symposium on engineering ecology, 2–4 December 2015, Moscow. The Russian Sciences Engineering A.S. Popov Society for Radio, Electronics and Communication, Moscov, pp 21–27

    Google Scholar 

  • Krapivin VF, Varotsos CA, Soldatov VY (2015c) New ecoinformatics tools in environmental science: applications and decision-making. Springer, London, UK, 903 pp

    Book  Google Scholar 

  • Krapivin VF, Mkrtchyan FA, Soldatov VY (2016) An expert system for the Okhotsk Sea investigation. In: Proceedings of the 31st International Symposium on Okhotsk Sea & Sea Ice, 21–24 February 2016, Mombetsu, Hokaido, Japan. The Okhotsk Sea & Cold Ocean Research Association (OSCORA), Mombetsy, pp 304–307

    Google Scholar 

  • Krapivin VF, Varotsos CA, Nghia BQ (2017a) A modeling system for monitoring water quality in lagoons. Water, Air, & Soil Pollution 228(397):1–12

    Google Scholar 

  • Krapivin VF, Varotsos CA, Soldatov VY (2017b) The Earth’s population can reach 14 billion in the 23rd century without significant adverse effects on survivability. International Journal of Environmental Research and Public Health 14(8):3–18

    Article  Google Scholar 

  • Krapivin VF, Varotsos CA, Soldatov VY (2017c) Simulation results from a coupled model of carbon dioxide and methane global cycles. Ecological Modelling 359:69–79

    Article  Google Scholar 

  • Krapivin VF, Nitu C, Mkrtchyan FA, Soldatov VY, Dobrescu AS (2018a) Information-instrumental tools of microwave and optical environmental monitoring. The Scientific Bulletin of Electrical Engineering Faculty 18(1):11–18

    Article  Google Scholar 

  • Krapivin VF, Varotsos CA, Marechek SV (2018b) The dependence of the soil microwave attenuation on frequency and water content in different types of vegetation: an empirical model. Water Air Soil Pollution 229(110):1–10

    Google Scholar 

  • Krapivin VF, Nitu C, Varotsos CA (2019) Microwave remote sensing tools and ecoinformatics. Matrix Rom, Bucharest

    Google Scholar 

  • Kuksa VI (1994) The Southern Seas under conditions of anthropogenic stress. Hydrometeoizdat, St. Petersburg. [in Russian]

    Google Scholar 

  • Kwok R (2010) Satellite remote sensing of sea-ice thickness and kinematics: A review. Journal of Glaciology 56(200):1129–1140

    Article  Google Scholar 

  • Laurel BJ, Copeman LA (2018) Temperature impacts on Polar cod (Boreogadus saida) during the first year of life. In: Proceedings of the 33-rd International Symposium on Okhotsk Sea & Polar Oceans 2018. 18–21 February 2018, Mombetsu, Hokkaido, Japan. Okhotsk Sea and Polar Oceans Research Association, Mombetsu, pp 4–5

    Google Scholar 

  • Legendre L, Krapivin VF (1992) Model for vertical structure of phytoplankton community in Arctic regions. In: Proceedings of the Seventh International Symposium on Okhotsk Sea and Sea Ice, 2–5 February 1992, Mombetsu, Hokkaido, Japan. Okhotsk Sea & Cold Ocean Research association, Mombetsu, pp 314–316

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Libes S (2009) Introduction to marine biochemistry. Elsevier, London

    Google Scholar 

  • Ma J, Hung H, Tian C, Kellenborn R (2011) Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nature Climate Change 1:255–260

    Article  Google Scholar 

  • Mangum G, Winkle W (1973) Responses of aquatic invertebrates to declining oxygen conditions. American Zoologist 13(12):529–541

    Article  Google Scholar 

  • Matoba S, Shiraiwa T, Tsushima A, Sasaki H, Muravyev YD (2011) Records of sea-ice extent and air temperature at the Sea of Okhotsk from an ice core of Mount Ichinsky, Kamchatka. Annals of Glaciology 52(58):44–50

    Article  Google Scholar 

  • Melentiev VV, Jochannessen OM, Kondratyev KY, Bobilev LP, Tichomirov AI (1998) An experience of satellite-based radiolocation diagnostics of the ice-lake cover: Ecology and history. Research in Earth Space 2:91–101. [in Russian]

    Google Scholar 

  • Mélia DS (2002) A global coupled sea ice–ocean model. Ocean Modelling 4(2):137–172

    Article  Google Scholar 

  • Michener WK, Baerwald TJ, Firth P, Palmer MA, Rosenberger JL, Sandlin EA, Zimmerman H (2001) Defining and unraveling biocomplexity. BioScience 51(12):1018–1023

    Article  Google Scholar 

  • Micklin PP (2002) Water in the Aral Sea basin of Central Asia: Cause of conflict and cooperation? Eurasian Geography and Economics 43(7):505–528

    Article  Google Scholar 

  • Micklin PP (2016) The future Aral Sea: Hope and despair. Environmental Earth Sciences 75(9):1–15

    Article  Google Scholar 

  • Mintzer IM (1987) A matter of degrees: the potential for controlling the greenhouse effect. World Resources Institute Research Report No. 15, Washington

    Google Scholar 

  • Mkrtchyan FA, Krapivin VF (2011) GIMS-technology in monitoring marine ecosystems. In: Proceedings of the 26th International Symposium on Okhotsk Sea & Sea Ice. 20–25 February 2011, Mombetsu, Hokkaido, Japan. Okhotsk Sea and Polar Oceans Research Association, Mombetsu, pp 163–166

    Google Scholar 

  • Mkrtchyan FA, Krapivin VF (2016) About microwave radiometry and spectroellipsometric technologies for monitoring marine ecosystems. In: Abstracts of the PICES annual meeting 2016 “25 Year of PICES: Celebrating the Past, Imagining the Future”, November 2–13, 2016. North Pacific Marine Science Organization, San Diego, pp 276–277

    Google Scholar 

  • Mkrtchyan, F. A., & Krapivin, V. F. (2017). Application GIMS- technology for the monitoring coastal and marine ecosystems. In North Pacific Marine Science Organization (PICES) Annual Meeting 2017, Abstracts. September 21–30, 2017, Vladivostok, Russia, p. 135

    Google Scholar 

  • Nagato Y, Tanaka HL (2012) Global warming trend without the contributions from decadal variability of the Arctic oscillation. Polar Science 6(1):15–22

    Article  Google Scholar 

  • Nakashima DJ, McLean GK, Thulstrup HD, Castillo R, Rubis JT (2012) Weathering uncertainty: Traditional knowledge for climate change assessment and adaptation. UNESCO/UNU, Paris/Darwin

    Google Scholar 

  • Nihashi S, Ohshima KI, Tamura T, Fukamachi Y, Saitoh S (2009) Thickness and production of sea ice in the Okhotsk Sea coastal polynyas from AMSR-E. Journal of Geophysical Research 114:C10025

    Article  Google Scholar 

  • Nikanorov AM, Bryzgalo VA, Kosmenko LS, Reshetnyak OS (2011) The Kolyma River mouth area under present conditions of anthropogenic impact. Russian Meteorology and Hydrology 36(8):549–558

    Article  Google Scholar 

  • Nitu C, Krapivin VF, Bruno A (2000) Intelligent techniques in ecology. Printech, Bucharest

    Google Scholar 

  • Nitu C, Krapivin VF, Dobrescu AS (2010) Application of global model to the study of Arctic Basin pollution. Scientific Bulletin of the Electrical Engineering Faculty 1(12):111–114

    Google Scholar 

  • Ohshima K-I, Martin S (2004) Introduction to special section: Oceanography of the Okhotsk Sea. Journal of Geophysical Research 109(C09S01):1–3

    Google Scholar 

  • Ohshima K-I, Nihashi S, Hashiya E, Watanabe T (2006) Interannual variability of sea ice area in the Sea of Okhotsk: Importance of surface heat flux in fall. Journal of the Meteorological Society of Japan 84(5):907–919

    Article  Google Scholar 

  • Ohshima, K. –I., Nakanowatari, T., Nakatsuka, T., Nishioka, J., & Wakatsuchi, M. (2009). Changes in the Sea of Okhotsk due to global warming – Weakening pump function to the North Pacific. PICES Scientific Report No. 36

    Google Scholar 

  • Osabe T, Fukuda J, Hara T, Ohnishi F, Otsuka N, Saitoh S-I, Sugimoto A, Takahashi M, Tanaka M, Tanaka S, Yasunaga H (2018) Future scenarios for Arctic 2050. In: Proceedings of the 33rd international symposium on Okhotsk Sea & Polar Oceans 2018. 18–21 February 2018. Mombetsu, Hokkaido, Japan. Okhotsk Sea and Polar Oceans Research Association, Mombetsu, pp 117–118

    Google Scholar 

  • Osipova NA, Stepanova KD, Matveenko IA (2015) Evaluation of metal content in perch of the Ob River basin. Earth and Environmental Science 27:1–5

    Google Scholar 

  • Proshutinsky AY, Johnson M (2001) Two regimes of the Arctic’s circulation from ocean models with ice and comtaminants. Marine Pollution Bulletin 43(1–6):61–70

    Article  Google Scholar 

  • Sasaki Y, Asanuma I, Muneyama K, Naito G, Suzuki T (1987a) A simplified micriwave model and its application to the determination of some oceanic environmental parametric values, using multichannel microwave radiometric observations. IEEE Transactions on Geoscience and Remote Sensing GE-25(3):384–392

    Article  Google Scholar 

  • Sasaki Y, Asanuma I, Muneyama K, Naito G, Suzuki T (1987b) The dependence of sea-surface microwave emission on wind speed, frequency, incidence angle, and polarization over the frequency range from 1 to 40 GHz. IEEE Transactions on Geoscience and Remote Sensing GE-25(2):138–146

    Article  Google Scholar 

  • Sasaki Y, Asanuma I, Muneyama K, Naito G, Suzuki T (1988) Microwave emission and reflection from the wind-roughened sea surface at 6.7 and GHz. IEEE Transactions on Geoscience and Remote Sensing 26(6):860–868

    Article  Google Scholar 

  • Schlüter M, Savitsky AG, McKinney DC, Lieth H (2005) Optimizing long-term water allocation in the Amudarya river delta – A water management model for ecological impact assessment. Environmental Modelling & Software 20(5):529–545

    Article  Google Scholar 

  • Shirasawa K, Krapivin VF, Mkrtchyan FA, Kelley JJ (2017) Biocomplexity problem related to the Okhotsk Sea fisheries. In: Proceedings of the IX international symposium «engineering ecology – 2017». Moscow, 5 – 7 December, 2017. The Moscow Sciences Engineering A.S. Popov Society for Radio, Electronics and Communication, Moscow, pp 75–79

    Google Scholar 

  • Sorokin YV (1977) The heterotrophic phase of phytoplankton succession in the Japan Sea. Marine Biology 41:107–117

    Article  Google Scholar 

  • Steehouwer H (2016) Ortec finance scenario approach. ORTeC Finance Scenario Department, Rotterdam

    Google Scholar 

  • Steele M, Ermold W, Zhang J (2011) Modeling the formation and fate of the near surface temperature maximum in the Canadian Basin of the Arctic Ocean. Journal of Geophysical Research 116(C11015):1–13

    Google Scholar 

  • Stohl A (2004) Intercontinental transport of air pollution. Springer, London

    Google Scholar 

  • Stone DP (2015) The changing Arctic environment: The Arctic messenger, vol 374. Cambridge University Press, Cambridge, pp 21–23

    Book  Google Scholar 

  • Takahashi H, Kasahara M, Kimata F, Miura S, Heki K, Seno T, Kato T, Vasilenko N, Ivaschenko A, Bahtiarov V, Levin V, Gordeev E, Korchagin F, Gerasimenko M (1999) Velocity field of around the Sea of Okhotsk and Sea of Japan regions determined from a new continuous GPS network data. Geophysical Research Letters 26(16):2533–2536

    Article  Google Scholar 

  • Tateyama K, Inoue J, Hoshino S, Sasaki S, Tanaka Y (2018) Development of a new algorithm to estimate Arctic sea-ice thickness based on Advanced Microwave Scanning Radiometer 2 data. In: Proceedings of the 33rd international symposium on Okhotsk Sea & Polar Oceans 2018. 18–21 February 2018. Mombetsu, Hokkaido, Japan. Okhotsk Sea and Polar Oceans Research Association, Mombetsu, pp 47–52

    Google Scholar 

  • Varotsos CA, Krapivin VF (2017) A new big data approach based on geoecological information-modeling system. Big Earth Data 1(1–2):47–63

    Article  Google Scholar 

  • Varotsos CA, Krapivin VF (2018) Pollution of Arctic waters has reached a critical point: An innovative approach to this problem. Water Air & Soil Pollution 229(11):343/1–343/14

    Article  Google Scholar 

  • Vinogradov ME, Gitelzon II, Sorokin JI (1970) The vertical structure of a pelagic community in the tropical ocean. Marine Biology 6(4):187–194

    Article  Google Scholar 

  • Wang D, Hemrichs SM, Guo L (2006) Distributions of nutrients, dissolved organic carbon and carbonhydrates in the western Arctic Ocean. Continental Shelf Research 26(14):1654–1667

    Article  Google Scholar 

  • Williams M, Eugster W, Rastetter EB, McFadden JP, Chapin FS III (2000) The controls on net ecosystem productivity along an Arctic transect: A model comparison with flux measurements. Global Change Biology 6(1):116–126

    Article  Google Scholar 

  • Zenkin OV, Leonov AV, Pishchalnik VM, Pokrashenko SA (2009) The use of satellite data to haracterize phytoplankton in Sea of Okhotsk water. Water Resources 36(4):466–477

    Article  Google Scholar 

  • Zhabin IA, Abrosimova AA, Dubina V, Nekrasov DA (2010) Influence of the Amur River runoff on the hydrological conditions of the Amur Liman and Sakhalin Bay (Sea of Okhotsk) during the spring-summer flood. Russian Meteorology and Hydrology 35(4):295–300

    Article  Google Scholar 

  • Zhang Y, Lu X, Wang N, Xin M, Geng S, Jia J, Meng G (2016) Heavy metals in aquatic organisms of different trophic levels and their potential human health risk in Bohai Bay, China. Environmental Science and Pollution Research International 23(17):17801–17810

    Article  Google Scholar 

  • Zweng MM, Boyer TP, Baranova OK, Reagan JR, Dan Seidov D, Smolyar IV (2018) An inventory of Arctic Ocean data in the World Ocean Database. Earth System Science Data 10:677–687

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varotsos, C.A., Krapivin, V.F. (2020). Space Methods and Monitoring Tools for the Investigation of Aquatic Systems. In: Microwave Remote Sensing Tools in Environmental Science . Springer, Cham. https://doi.org/10.1007/978-3-030-45767-9_7

Download citation

Publish with us

Policies and ethics