Remote Sensing Technologies and Data Processing Algorithms

  • Costas A. Varotsos
  • Vladimir F. Krapivin


Remote sensing of land cover, atmosphere and World Ocean aquatories is based on the recording of the background or reflected and scattered electromagnetic radiation. The ability to obtain data on the properties of environmental elements is related to the knowledge of explaining the dependence of thermal emission on the physical and geothermal parameters. Also, the scattering mechanims and the active reflection of radiation are functions of these parameters (Shutko et al. 1994, 2010; Krapivin and Shutko 2002; Petty 1995; Schimel 1995).


  1. Cannell M (1982) World forest biomass and primary production data. Academic Press, New YorkGoogle Scholar
  2. Chukhlantsev AA (2006) Microwave radiometry of vegetation canopies. Springer, BerlinGoogle Scholar
  3. DeWitt DP, Nutter GD (eds) (1988) Theory and practice of radiation thermometry. Wiley, New YorkGoogle Scholar
  4. Ding XL, Li ZW, Zhu JJ, Feng GC, Long JP (2008) Atmospheric effects on InSAR measurements and their mitigation. Sensors (Basel) 8(9):5426–5448CrossRefGoogle Scholar
  5. Ferm M, Hultberg H (1999) Dry deposition and internal circulation of nitrogen, sulfur and base cations to a coniferous forest. Atmos Environ 33(27):4421–4430CrossRefGoogle Scholar
  6. Gasiewski AJ, Kunkee DB (1994) Polarized microwave emission from water waves. Radio Sci 29(6):1449–1466CrossRefGoogle Scholar
  7. Grankov AG, Milshin AA (2010) Microwave radiation of the ocean-atmosphere: boundary heat and dynamic interaction. Springer, BerlinCrossRefGoogle Scholar
  8. Haarbrink R, Krapivin VF, Krisilov A, Krisilov V, Novichikhin EP, Shutko AM, Sidorov I (2011) Intelligent data processing in global monitoring and security. ITHEA, Sofia-KievGoogle Scholar
  9. Kondratyev KY, Varotsos CA (2000) Atmospheric ozone variability: Implicatiions for climate change, human health, and ecosystems. Springer-Praxis, ChichesterGoogle Scholar
  10. Kondratyev KY, Grigoryev AA, Varotsos CA (2002) Environmental disasters: Anthropogenic and natural. Springer/PRAXIS, ChichesterGoogle Scholar
  11. Kondratyev KY, Ivlev LS, Krapivin VF, Varotsos CA (2006) Atmospheric aerosol properties: formation, processes and impacts. Springer/PRAXIS, ChichesterGoogle Scholar
  12. Krapivin VF, Mkrtchyan FA (1991) Applications in study of environment. In: Proceedings of the 8th international conference on control systems and computer science, 22–25 May 1991, Polytechnical Institute, Bucharest, pp 49–56.Google Scholar
  13. Krapivin VF, Phillips GW (2001) A remote sensing based expert system to study the Aral-Caspian aqua geosystem water regime. Remote Sens Environ 75:201–215CrossRefGoogle Scholar
  14. Krapivin VF, Shutko AM (2002) Investigations in the field of microwave monitoring of land covers. Prob Environ Nat Resour 4:44–53. [in Russian]Google Scholar
  15. Krapivin VF, Shutko AM (2012) Information technologies for remote monitoring of the environment. Springer/Praxis, Chichester, UK, 498 ppCrossRefGoogle Scholar
  16. Krapivin VF, Varotsos CA (2007) Globalization and sustainable development. Springer/Praxis, ChichesterGoogle Scholar
  17. Krapivin VF, Varotsos CA (2008) Biogeochemical cycles in globalization and sustainable development. Springer/Praxis, ChichesterGoogle Scholar
  18. Krapivin VF, Bui TL, Rochon GL, Hicks DR (1996) A global simulation model as a method for estimation of the role of regional area in global change. In: Proceedings of second HoChiMinh City conference on mechanics, 24–25 September 1996. Institute of Applied Mechanics, HoChiMinh City, pp 68–69Google Scholar
  19. Krapivin VF, Cherepenin VA, Nazaryan NA, Phillips GW, Tsang FY (1997a) Simulation model for radionuclides transport in the Angara-Yenisey river system. Prob Environ Nat Resour 2:41–58. [in Russian]Google Scholar
  20. Krapivin VF, Bui TL, Dean C, Nguyen MN, Rochon GL, Hicks DR (1997b) System of survey and simulation for air pollution over large industrial regions. In: Proceedings of the IASTED International conference on “Modelling, Simulation and Optimization” (MSO’97), (August 11–13, 1997, Singapore). IASTED/Acta Press, Anaheim, pp 307–311Google Scholar
  21. Krapivin VF, Cherepenin VA, Phillips GW, August RA, Pautkin AY, Harper MJ, Tsang FY (1998) An application of modeling technology to the study of radionuclear pollutants and heavy metals dynamics in the Angara-Yenisey river system. Ecol Model 111(2–3):121–134CrossRefGoogle Scholar
  22. Krapivin VF, Nitu C, Soldatov VY (2010) Synthesis of geoecological information-modeling systems. Scientif Bull Elect Eng Facult Valahia Univ Targoviste, Romania 10(1):101–105Google Scholar
  23. Krapivin VF, Varotsos CA, Soldatov VY (2015a) New ecoinformatics tools in environmental science: Applications and decision-making. Springer, LondonCrossRefGoogle Scholar
  24. Krapivin VF, Mkrtchyan FA, Dao Van Tuyet (2015b) Constructive method for the vegetation microwave monitoring. In: Proceedings of the international symposium on engineering ecology, 2–4 December 2015, Moscow. The Russian Sciences Engineering A.S. Popov Society for Radio, Electronics and Communication, Moscov, pp 21–27Google Scholar
  25. Krapivin VF, Varotsos CA, Nghia BQ (2017) A modeling system for monitoring water quality in lagoons. Water Air Soil Poll 228(397):1–12Google Scholar
  26. Krapivin VF, Nitu C, Varotsos CA (2019) Microwave remote sensing tools and ecoinformatics. Matrix Rom, BucharestGoogle Scholar
  27. Kutuza BG, Zagorin G, Hornbostel A, Schroth A (1998) Physical modeling of passive polarimetric microwave observations of the atmosphere with respect to the third Stokes parameter. Radio Sci 33(3):677–695CrossRefGoogle Scholar
  28. Kutuza BG, Shutko A, Plushchev V, Ramsey E, Logan B, DeLoach S., Haldin A, Novichikhin E, Sidorov I, Manakov V, Nelson G (2000) Advantages of synchronous multi-spectral SAR and microwave radiometric observations of land covers from aircraft platforms. In: Proceedings of the EUSAR’2000, 3rd European conference on synthetic Aperture Radar, 23–25 May 2000, Munich, Germany, pp 663–666Google Scholar
  29. Liou YA, Pavelyev AG, Matyugov SS, Yakovlev OI, Wickert J (2010) Radio occultation method for remote sensing of the atmosphere and ionosphere. InTech Publ, RijekaCrossRefGoogle Scholar
  30. Metternicht GI (1998) Fuzzy classification of JERS-1 SAR data: an evaluation of its performance for soil salinity mapping. Ecol Model 111(1):61–74CrossRefGoogle Scholar
  31. Petty GW (1995) The status of satellite-based rainfall estimation over land. Remote Sens Environ 51(1):125–137CrossRefGoogle Scholar
  32. Sasaki Y, Naito G, Wilheit TT (1989) Rainfall rate dependence of brightness temperature of microwave emission from rain. In: Proceeding of annual spring meeting of oceanographical society of Japan, Tokyo, 5–9 April 1989, Oceonographic Society of Japan,Tokyo, pp 65–66Google Scholar
  33. Schimel DS (1995) Terrestrial biogeochemical cycles: Global estimates with remote sensing. Remote Sens Environ 51(1):49–56CrossRefGoogle Scholar
  34. Sellers PJ, Bounoua L, Collatz GJ, Randall DA, Dazlich DA, Los SO, Berry JA, Fung I, Tucker CJ, Field CB, Jensen TG (1996) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271:1402–1406CrossRefGoogle Scholar
  35. Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509CrossRefGoogle Scholar
  36. Shutko AM (1987) Remote sensing of waters and lands via microwave radiometry (The principles of method, problems feasible for solving, economic use). Pontificiae Academiae Scientiarum Scripta Varia 68:413–441Google Scholar
  37. Shutko AM, Krapivin VF, Mkrtchyan FA, Reutov EA, Novichkhin EP, Leonidov VA, Mishanin VG, Tsankov NS (1994) Econo-ecological estimates of the effectiveness of utilizing remotely sensed data and GIS information for soil moisture and moisture related parameters determination (Geoinformation Monitoring System Approach – GIMS). In: Proceedings of the ICID, Varna, 7–9 May, pp 185–189Google Scholar
  38. Shutko AM, Krapivin VF, Haarbrink RB, Sidorov IA, Novichikhin EP, Archer F, Krisilov AD (2010) Practical microwave radiometric risk assessment. Professor Marin Drinov Academic Publishing House, SofiaGoogle Scholar
  39. Solaro G, Bonano M, Manzo M, Gastaldo R (2017) Ground deformation analysis through spaceborne SAR interferometry and geophysical modeling. Geoingeneria Ambientale e Mineraria 152(3):73–80Google Scholar
  40. Straub CP (ed) (1989) Practical handbook of environmental control. CRC Press, Boca RatonGoogle Scholar
  41. Strelkov GM, Soldatova IV (1989) Radio-impulse propagation within the line of the oxygen absorption. Radiotechnics (Moscow) 3:16–17. [in Russian]Google Scholar
  42. Thangavel S, Reddy KKSV (2011) Ozone layer depletion and its effects: A review. Intl J Environ Sci Develop 2:30–37Google Scholar
  43. Yakovlev OI (2001) Space radio science. Taylor and Francis Group, LondonGoogle Scholar
  44. Yakovlev OI, Paveliev AG, Matyugov SS (2009) The earth satellite monitoring. Book House Publishing, Moscow. [in Russian]Google Scholar
  45. Zhou X, Chang N-B, Li S (2009) Applications of SAR interferometry in Earth and environmental science research. Sensors 9:1876–1912CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Costas A. Varotsos
    • 1
  • Vladimir F. Krapivin
    • 2
  1. 1.National and Kapodistrian University of Athens (NKUA)AthensGreece
  2. 2.Institute of Radio-Engineering and ElectronicsFryazinoRussia

Personalised recommendations