Basic Concepts of Microwave Radiometry

  • Costas A. Varotsos
  • Vladimir F. Krapivin


Super High Frequency (SHF) radiometry began to develop in the 1950s mainly in the former Soviet Union and the United States, with the aim of studying the emission of natural and anthropogenic objects in all weather conditions, the composition of radio-landscapes maps, the development of the recognition methodology for the land and water surfaces and on their basis the application of the radio-landscape navigation.


  1. Anaokar GS, Khambete AK (2016) Application of fuzzi logic in environmental engineering for determination of air quality index. Int J Eng Technol Manag Appl Sci 4(2):110–115Google Scholar
  2. Andreas AM, Wilcox SM (2016) Radiometer calibration and characterization (RCC) user’s manual. Technical report NREL/TP-3B10-65844, National Renewable Energy Laboratory, Golden, USAGoogle Scholar
  3. Asrar G, Dozier J (1994) EOS: science strategy for the earth observing system. AIP Press, WoodburyGoogle Scholar
  4. Battaglia A, Simmer C (2007) Explaining the polarization signal from rain dichroic effects. J Quant Spectrosc Radiat Transf 105(1):84–101CrossRefGoogle Scholar
  5. Brogioni M, Macelloni G, Palchetti E, Crepaz A (2009) Monitoring snow characteristics with ground-based multifrequency microwave radiometry. IEEE Trans Geosci Remote 47(11):3643–3655CrossRefGoogle Scholar
  6. Butt MJ (2004) Microwave snow emission model and its contributing parameters. J Res (Sci) Bahauddin Zakariya University, Multan, Pakistan 15(2):113–121Google Scholar
  7. Camps A, Tarongí JM (2010) Microwave radiometer resolution optimization using variable observation times. Remote Sens 2:1826–1843CrossRefGoogle Scholar
  8. Carcolé E, Ugalde A (2008) Formulation of the multiple anisotropic scattering process in two dimensions for anisotropic source radiation. Geophys J Int 174(3):1037–1051CrossRefGoogle Scholar
  9. Che T, Li X, Jin R, Armstrong R, Tingjun Zhang T (2008) Snow depth derived from passive microwave remote-sensing data in China. Ann Glaciol 49:145–154CrossRefGoogle Scholar
  10. Chen C-T, Tsang L, Guo J, Chang ATC, Ding K-H (2003) Frequency dependence of scattering and extinction of dense media based on three-dimensional simulations of Maxwell’s equations with applications to snow. IEEE Trans Geosci Remote 41(8):1844–1852CrossRefGoogle Scholar
  11. Choudhury BJ, Kerr YH, Njoku EG, Pampaloni P (eds) (1995) Land-atmosphere interactions. UtrechtGoogle Scholar
  12. Chukhlantsev AA (2006) Microwave radiometry of vegetation canopies. Springer, BerlinGoogle Scholar
  13. Clifford D (2010) Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments. Int J Remote Sen 31(14):3707–3726CrossRefGoogle Scholar
  14. Cookmartin G, Saich P, Quegan S, Corday R, Burgess-Allen P, Sowter A (2000) Modeling microwave interactions with crops and comparison with ERS-2 SAR observations. IEEE Trans Geosci Remote 38(2):658–670CrossRefGoogle Scholar
  15. Cracknell AP, Krapivin VF, Varotsos CA (eds) (2009) Global climatology and ecodynamics: anthropogenic changes to planet earth. Springer/Praxis, ChichesterGoogle Scholar
  16. Dai L, Che T, Ding Y, Hao X (2017) Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing. Cryosphere 11:1933–1948CrossRefGoogle Scholar
  17. Del Frate F, Ferrazzoli P, Schiavon G (2003) Retriveing soil moisture and agricultural variables by microwave radiometry using neural networks. Proc SPIE 84(2):174–183Google Scholar
  18. Derksen C, Toose P, Lemmetyinen J, Pulliainen J, Langlois A, Rutter N, Fuller MC (2012) Evaluation of passive microwave brightness temperature simulations and snow water equivalent retrievals through a winter season. Proc SPIE 117:236–248Google Scholar
  19. DeWitt DP, Nutter GD (eds) (1988) Theory and practice of radiation thermometry. Wiley, New YorkGoogle Scholar
  20. Dong J, Kaufmann RK, Myneni RB, Tucker CJ, Kauppi PE, Liski J, Buermann W, Alexeyev V, Hughes MK (2003) Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Proc SPIE 84(3):393–410Google Scholar
  21. Dong J, Walker JP, Houser PR, Sun C (2007) Scanning multichannel microwave radiometer snow water equivalent assimilation. J Geophys Res 112(D07108):1–16Google Scholar
  22. Engman ET, Chauhan N (1995) Status of microwave soil moisture measurements with remote sensing. Proc rSPIE 51(1):189–198Google Scholar
  23. Fang H, Liang S (2003) Retrieving leaf area index with a neural network method: simulation and validation. IEEE Trans Geosci Remote 41(9):2052–2062CrossRefGoogle Scholar
  24. Ferrazzoli P, Paloscia S, Pampaloni P, Schiavon G, Solimini D, Coppo P (1992) Sensitivity of microwave measurements to vegetation biomass and soil moisture content: a case study. IEEE Trans Geosci Remote 30(4):750–756CrossRefGoogle Scholar
  25. Fieuzal R, Baup F, Marais-Sicre C (2013) Monitoring wheat and rapeseed by using synchronous optical and radar satellite data—from temporal signatures to crop parameters estimation. ARS 2:162–180CrossRefGoogle Scholar
  26. Friedi MA, Mclver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Proc SPIE 83(1–2):287–302Google Scholar
  27. Frolov AD, Macheret YY (1999) On dielectric properties of dry and wet snow. Hydrol Proc 13(12–13):1755–1760CrossRefGoogle Scholar
  28. Fujita S, Matsuoka T, Ishida T, Matsuoka K, Mae S (2000) A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets. In: Hondoh T (ed) Physics of ice core records. Hokkaido University Press, Sapporo, pp 185–212Google Scholar
  29. Givant S, Halmos P (2009) Introduction to Boolean algebras. Undergraduate texts in mathematics, XIV. Springer, BerlinGoogle Scholar
  30. Haarbrink R, Krapivin VF, Krisilov A, Krisilov V, Novichikhin EP, Shutko AM, Sidorov I (2011) Intelligent data processing in global monitoring and security. ITHEA, Sofia-KievGoogle Scholar
  31. Hallikainen MT, Ulaby FT, Abdelrazik M (1986) Dielectric properties of snow in the 3 to 37 GHz range. IEEE Trans Antennas Propag 34(11):1329–1340CrossRefGoogle Scholar
  32. Hofer R, Mätzler C (1980) Investigation of snow parameters by radiometry in the 3- to 60-mm wavelength region. J Geophys Res 85:453–460CrossRefGoogle Scholar
  33. Jackson TJ, Hsu AY, Shutko A, Tishchenko Y, Petrenko B, Kutuza B, Armand N (2002) Priroda microwave radiometer observations in the southern Great Plains 1997 hydrology experiment. Int J Remote Sensing 23(2):231–248CrossRefGoogle Scholar
  34. Janssen MA (ed) (1993) Atmospheric remote sensing by microwave radiometry. Wiley, New YorkGoogle Scholar
  35. Kelly REJ, Chang ATC (2003) Development of a passive microwave global snow depth retrieval algorithm for Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) data. Radio Sci 38(4): 41-1–41-11Google Scholar
  36. Koike T (1993) Passive-microwave remote sensing of snow. Ann Glaciol 18:305–308CrossRefGoogle Scholar
  37. Kondratyev KY, Krapivin VF, Savinykh VP, Varotsos CA (2004) Global ecodynamics: a multidimensional analysis. Springer-Praxis, ChichesterCrossRefGoogle Scholar
  38. Krapivin VF, Shutko AM (1989) Observation and prognosis of the state of environmental resources, ecological and meteorological situations by geoinformational monitoring system. Proceedings of the Fourth Int. Symposium on Okhotsk Sea & Sea Ice. (February 5–7, 1989, Mombetsu, Japan). Okhotsk Sea & Cold Ocean Res Assoc, Mombetsu, Japan, p 1–5.Google Scholar
  39. Krapivin VF, Shutko AM (2002) Investigations in the field of microwave monitoring of land covers. Probl Environ Nat Resour 4:44–53. [in Russian]Google Scholar
  40. Krapivin VF, Shutko AM (2012) Information technologies for remote monitoring of the environment. Springer/Praxis, ChichesterCrossRefGoogle Scholar
  41. Krapivin VF, Shutko AM, Chukhlantsev AA, Golovachev SP, Phillips GW (2006) GIMS-based method vegetation microwave monitoring. Environ Model Softw 21:330–345CrossRefGoogle Scholar
  42. Krapivin VF, Varotsos CA, Soldatov VY (2015) New ecoinformatics tools in environmental science: applications and decision-making. Springer, LondonCrossRefGoogle Scholar
  43. Krapivin VF, Nitu C, Varotsos CA (2019) Microwave remote sensing tools and ecoinformatics. Matrix Rom, BucharestGoogle Scholar
  44. Küchler N, Turner DD, Löhnert U, Crewell S (2016) Calibrating ground-based microwave radiometers: uncertainty and drifts. Radio Sci 51(4):311–327CrossRefGoogle Scholar
  45. Kutuza BG, Zagorin G, Hornbostel A, Schroth A (1998) Physical modeling of passive polarimetric microwave observations of the atmosphere with respect to the third Stokes parameter. Radio Sci 33(3):677–695CrossRefGoogle Scholar
  46. Kutuza BG, Shutko A, Plushchev V, Ramsey E, Logan B, DeLoach S., Haldin A, Novichikhin E, Sidorov I, Manakov V, Nelson G (2000) Advantages of Synchronous Multi-Spectral SAR and Microwave Radiometric Observations of Land Covers from Aircraft Platforms. Proceedings of the EUSAR'2000, 3rd European Conference on Synthetic Aperture Radar, 23–25 May 2000, Munich, Germany, p 663–666.Google Scholar
  47. Langlois A, Barber DG, Hwang BJ (2007) Development of a winter snow water equivalent algorithm using in situ passive microwave radiometry over snow-covered first-year sea ice. Proc SPIE 106:75–88Google Scholar
  48. Lemmetyinen J, Derksen C, Rott H, Macelloni G, King J, Schneebeli M, Pulliainen J (2018) Retrieval of effective correlation length and snow water equivalent from radar and passive microwave measurements. Remote Sens 10(2):170–198CrossRefGoogle Scholar
  49. Liu Y, Li L, Yang J, Chen X, Hao J (2017) Estimating snow depth using multi-source data fusion based on the D-InSAR method and 3DVAR fusion algorithm. Remote Sens 9(1195):1–17Google Scholar
  50. Lopez-Iturri P, de Miguel-Bilbao S, Aquirre E, Azpilicueta L, Falcone F, Ramos V (2015) Estimation of radiofrequency power leakage from microwave ovens for dosimetric assessment at nonionizing radiation explosure levels. BioMed Res Int, Article ID 603260, 14 ppGoogle Scholar
  51. Macelloni G, Paloscia S, Pampaloni P, Tedesco M (2001) Microwave emission from dry snow: a comparison of experimental and model results. IEEE Trans Geosci Remote Sens 39(12):2449–2656CrossRefGoogle Scholar
  52. Mätzler C, Murk A (2010) Complex dielectric constant of dry sand in the 0.1 to 2 GHz range. Research report no. 2010-06-MW, Institut für Angewandte Physik, BernGoogle Scholar
  53. Meier MF (1980) Remote sensing of snow and ice. Hydrol Sci Bull 25(3):307–330CrossRefGoogle Scholar
  54. Mickelsen AD (1971) Measurement of soil moisture by attenuation of a vertically polarized radio wave. Utah State University, LoganGoogle Scholar
  55. Migliaccio M, Gambardella A (2005) Microwave radiometer spatial resolution enhancement. IEEE Trans Geosci Remote 43(5):1159–1169CrossRefGoogle Scholar
  56. Monjardin H, Covarrubias DH, Nuñez RF (2009) A new proposal Capon beamformer for angular spreads on distributed sources in a cellular environment. Prog Electromagn Res C (6):167–177Google Scholar
  57. Nitu C, Krapivin VF, Soldatov VY (2013) Information-modeling technology for environmental investigations. Matrix ROM, BucharestGoogle Scholar
  58. Pampaloni P (2004) Microwave radiometry of forests. Waves in Random Media 14:S275–S298CrossRefGoogle Scholar
  59. Park H, Choi J, Katkovnik V, Kim Y (2004) Interferometric microwave radiometers for high-resolution imaging of the atmosphere brightness temperature based on the adaptive Capon signal processing algorithm. Environ Monit Assess 92(1–3):59–72CrossRefGoogle Scholar
  60. Prigent C, Aires F, Rossow WB (2006) Land surface microwave emissivities over the globe for a decsde. American Meteorological Society, BAMS, pp 1573–1584.
  61. Proksch M, Mätzler C, Wiesmann A, Lemmetyinen J, Schwank M, Löwe H, Schneebeli M (2015) MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering. Geosci Model Dev 8:2611–2626CrossRefGoogle Scholar
  62. Pulliainen JT, Grandell J, Hallikainen M (1999) HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Trans Geosci Remote Sens 37:1378–1390CrossRefGoogle Scholar
  63. Pulliainen J (2006) Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Proc SPIE 101:257–269Google Scholar
  64. Schwank M, Rautiainen K, Mätzler C, Stähli M, Lemmetyinen J, Pulliainen J, Vehviläinen J, Kontu A, Ikonen J, Ménard CB, Drusch M, Wiesmann A, Wegmüller U (2014) Model for microwave emission of a snow-covered ground with focus on L band. Proc SPIE 154:180–191Google Scholar
  65. Shi XK, Wen J, Wang L, Zhang TT, Tian H, Wang X, Liu R, Zhang JH (2009) Application of satellite microwave remote sensed brightness temperature in the regional soil moisture simulation. Hydrol Earth Syst Scs Discuss 6:1233–1260CrossRefGoogle Scholar
  66. Shutko AM (1982) Microwave radiometry of lands under natural and artificial moistening. IEEE Trans Geosci Remote 20:18–26CrossRefGoogle Scholar
  67. Shutko AM, Haldin A, Krapivin V, Novitchikhin E, Sidorov I, Yu T, Haarbrink R, Georgiev G, Kancheva R, Nikolov H, Coleman T, Archer F, Pampaloni P, Paloscia S, Krisilov A, Carmona A (2007) Microwave radiometry in monitoring and emergency mapping of water seepage and dangerously high groundwaters. J Telecommun Inf Technol 1:76–82Google Scholar
  68. Shutko AM, Krapivin VF, Haarbrink RB, Sidorov IA, Novichikhin EP, Archer F, Krisilov AD (2010) Practical microwave radiometric risk assessment. Professor Marin Drinov Academic Publishing House, SofiaGoogle Scholar
  69. Solheim F, Godwin J, Ware R (1998) Passive ground-based remote sensing of atmospheric temperature, water wapor, and cloud liquid profiles by a frequency synthesized microwave radiometer. The Meteorologische Zeitschrift (Meteorological Journal) 7:370–376CrossRefGoogle Scholar
  70. Surhone LM, Timpledon MT, Marseken SF (2010) Stefan-Boltzmann law: Stefan-Boltzmann law, black body, irradiance, thermodynamic temperature, ultraviolet catastrophe, history of quantum mechanics, thermodynamics. Betascript Publishing, OttawaGoogle Scholar
  71. Takala M, Luojus K, Pulliainen J, Derksen C, Lemmetyinen J, Kärnä J-P, Koskinen J, Bojkov B (2011) Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Proc SPIE 115(12):3517–3529Google Scholar
  72. Tianhong L, Yanxin S, An X (2003) Integration of large scale fertilizing models with GIS using minimum unit. Environ Model 18(3):221–229CrossRefGoogle Scholar
  73. Tiuri ME, Sihvola AH, Nyfors EG, Hallikaiken MT (1984) The complex dielectric constant of snow at microwave frequencies. IEEE J Ocean Eng OE-9(5):377–382CrossRefGoogle Scholar
  74. Trefil JS (2003) The nature of science: an A–Z guide to the laws and principles governing our universe. Houghton Mifflin Harcourt, BostonGoogle Scholar
  75. Tsutsui H, Maeda T (2017) Possibility of estimating seasonal snow depth based solely on passive microwave remote sensing on the Greenland Ice Sheet in spring. Remote Sens 9(523):1–22Google Scholar
  76. Varotsos CA, Krapivin VF (2017) A new big data approach based on geoecological information-modeling system. Big Earth Data 1(1–2):47–63CrossRefGoogle Scholar
  77. Varotsos CA, Krapivin VF, Chukhlantsev AA (2019) Microwave polarization characteristics of snow at 6.9 and 18.7 GHz: estimating the water content of the snow layers. J Quant Spectrosc Radiat Transf 225:219–226CrossRefGoogle Scholar
  78. Wen B, Tsang L, Winnerbrener DP, Ishimaru A (1990) Dense medium radiative transfer theory: comparison with experiment and application to microwave remote sensing and polarimetry. IEEE Trans Geosci Remote 28:46–59CrossRefGoogle Scholar
  79. Wen J, Jackson TJ, Bindlish R, Hsu AN (2005) Retrieval of soil moisture and vegetation water content using SSM/I data over a corn and soybean region. Journal of Hydrometeorology—Special Section 6:854–861CrossRefGoogle Scholar
  80. Woodhouse IH (2005) Introduction to microwave remote sensing. CRC Press, Washigton, DCGoogle Scholar
  81. Xie X, Crewell S, Löhnert U, Simmer C, Miao J (2015) Polarization signatures and brightness temperatures caused by horizontally oriented snow particles at microwave bands: Effects of atmospheric absorption. JGR Atmos 120:6145–6160Google Scholar
  82. Zhou DK, Larar AM, Liu X, Smith WL (2011) Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Trans Geosci Remote 49(4):1277–1290CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Costas A. Varotsos
    • 1
  • Vladimir F. Krapivin
    • 2
  1. 1.National and Kapodistrian University of Athens (NKUA)AthensGreece
  2. 2.Institute of Radio-Engineering and ElectronicsFryazinoRussia

Personalised recommendations