Skip to main content

A Novel Outlook on Feature Selection as a Multi-objective Problem

  • Conference paper
  • First Online:
Book cover Artificial Evolution (EA 2019)

Abstract

Feature selection is the process of choosing, or removing, features to obtain the most informative feature subset of minimal size. Such subsets are used to improve performance of machine learning algorithms and enable human understanding of the results. Approaches to feature selection in literature exploit several optimization algorithms. Multi-objective methods also have been proposed, minimizing at the same time the number of features and the error. While most approaches assess error resorting to the average of a stochastic K-fold cross-validation, comparing averages might be misleading. In this paper, we show how feature subsets with different average error might in fact be non-separable when compared using a statistical test. Following this idea, clusters of non-separable optimal feature subsets are identified. The performance in feature selection can thus be evaluated by verifying how many of these optimal feature subsets an algorithm is able to identify. We thus propose a multi-objective optimization approach to feature selection, EvoFS, with the objectives to i. minimize feature subset size, ii. minimize test error on a 10-fold cross-validation using a specific classifier, iii. maximize the analysis of variance value of the lowest-performing feature in the set. Experiments on classification datasets whose feature subsets can be exhaustively evaluated show that our approach is able to always find the best feature subsets. Further experiments on a high-dimensional classification dataset, that cannot be exhaustively analyzed, show that our approach is able to find more optimal feature subsets than state-of-the-art feature selection algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://bitbucket.org/evomlteam/moea-feature-selection.

  2. 2.

    Intel® Core™ i7-8750H 2.20 GHz, 8 GB RAM.

References

  1. Cilia, N.D., De Stefano, C., Fontanella, F., Scotto di Freca, A.: Variable-length representation for EC-based feature selection in high-dimensional data. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 325–340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_22

    Chapter  Google Scholar 

  2. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2015)

    Article  Google Scholar 

  3. Hamdani, T.M., Won, J.-M., Alimi, A.M., Karray, F.: Multi-objective feature selection with NSGA II. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 240–247. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71618-1_27

    Chapter  Google Scholar 

  4. Xue, B., Fu, W., Zhang, M.: Multi-objective feature selection in classification: a differential evolution approach. In: Dick, G.G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 516–528. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13563-2_44

    Chapter  Google Scholar 

  5. Vignolo, L.D., Milone, D.H., Scharcanski, J.: Feature selection for face recognition based on multi-objective evolutionary wrappers. Expert Syst. Appl. 40(13), 5077–5084 (2013)

    Article  Google Scholar 

  6. Zhou, Z., Li, S., Qin, G., Folkert, M., Jiang, S., Wang, J.: Multi-objective based radiomic feature selection for lesion malignancy classification. IEEE J. Biomed. Health Inform. 24, 194–204 (2019)

    Article  Google Scholar 

  7. Fan, Y.J., Kamath, C.: On the selection of dimension reduction techniques for scientific applications (2012). 10.2172/1036865. part of the Annals of Information Systems book series (AOIS, volume 17)

  8. Bermingham, M., et al.: Application of high-dimensional feature selection: evaluation for genomic prediction in man. Sci. Rep. 5, 10312 (2015). https://doi.org/10.1038/srep10312

    Article  Google Scholar 

  9. Tsai, F.S.: Dimensionality reduction for computer facial animation. Expert Syst. Appl. 39(5), 4965–4971 (2012). https://doi.org/10.1016/j.eswa.2011.10.018

    Article  Google Scholar 

  10. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  11. Lewis, P.: The characteristic selection problem in recognition systems. IRE Trans. Inf. Theory 8(2), 171–178 (1962)

    Article  Google Scholar 

  12. Chien, Y., Fu, K.S.: On the generalized Karhunen-Loève expansion (Corresp.). IEEE Trans. Inf. Theory 13(3), 518–520 (1967)

    Article  Google Scholar 

  13. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature selection for SVMs. In: Advances in Neural Information Processing Systems 13, pp. 668–674. MIT Press (2000)

    Google Scholar 

  14. Kozachenko, L., Leonenko, N.N.: Sample estimate of the entropy of a random vector. Problemy Peredachi Informatsii 23(2), 9–16 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Fisher, R.A.: XV-the correlation between relatives on the supposition of mendelian inheritance. Earth Environ. Sci. Trans. R. Soc. Edinb. 52(2), 399–433 (1919)

    Article  Google Scholar 

  16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  17. Heiman, G.W.: Understanding Research Methods and Statistics: An Integrated Introduction for Psychology. Mifflin and Company, Houghton (2001)

    Google Scholar 

  18. Cox, D.R.: The regression analysis of binary sequences. J. Roy. Stat. Soc. Ser. B (Methodol.) 20(2), 215–232 (1958)

    MathSciNet  MATH  Google Scholar 

  19. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

    Article  Google Scholar 

  20. Welch, B.L.: The generalization of student’s problem when several different population variances are involved. Biometrika 34(1/2), 28–35 (1947)

    Article  MathSciNet  Google Scholar 

  21. Krzywinski, M., Altman, N.: Points of significance: comparing samples-part I. Nat. Methods 11(3), 215 (2014)

    Article  Google Scholar 

  22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Casalicchio, G., et al.: OpenML: an R package to connect to the machine learning platform OpenML. Comput. Statistics 34(3), 977–991 (2017). https://doi.org/10.1007/s00180-017-0742-2

    Article  MathSciNet  MATH  Google Scholar 

  24. Garrett, A.: inspyred (version 1.0.1) inspired intelligence (2012). https://github.com/aarongarrett/inspyred

  25. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explor. 15(2), 49–60 (2013). https://doi.org/10.1145/2641190.2641198

    Article  Google Scholar 

  26. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  27. Quinlan, J.R.: Simplifying decision trees. Int. J. Man Mach. Stud. 27(3), 221–234 (1987)

    Article  Google Scholar 

  28. Siebert, J.P.: Vehicle recognition using rule based methods (1987)

    Google Scholar 

  29. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the NIPS 2003 feature selection challenge. In: Advances in Neural Information Processing Systems, pp. 545–552 (2005)

    Google Scholar 

  30. Guyon, I.: Design of experiments of the NIPS 2003 variable selection benchmark. In: NIPS 2003 Workshop on Feature Extraction and Feature Selection (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Tonda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbiero, P., Lutton, E., Squillero, G., Tonda, A. (2020). A Novel Outlook on Feature Selection as a Multi-objective Problem. In: Idoumghar, L., Legrand, P., Liefooghe, A., Lutton, E., Monmarché, N., Schoenauer, M. (eds) Artificial Evolution. EA 2019. Lecture Notes in Computer Science(), vol 12052. Springer, Cham. https://doi.org/10.1007/978-3-030-45715-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45715-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45714-3

  • Online ISBN: 978-3-030-45715-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics