Skip to main content

DICOM Metadata Quality Analysis for Mammography Radiation Exposure Characterization

  • Conference paper
  • First Online:
Trends and Innovations in Information Systems and Technologies (WorldCIST 2020)

Abstract

The usage of ionizing radiation on human tissues for medical purposes has been object of regular analyses using Digital Imaging and Communication in Medicine (DICOM) metadata. Particularly, the DICOM metadata related to mammographic studies has been used to support the monitoring of individual and population exposure. The objective of this work was to analyze the quality of DICOM metadata to characterize radiation exposure in mammographic studies performed during the first year of activity of a mammography equipment. Although DICOM metadata allow to characterize the radiation dose in mammographic studies, the results show that it is pertinent to effectively improve the quality of the stored metadata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Association NEM, ed. Digital Imaging and Communication in Medicine (DICOM) Part 3: Information Object Definition (2019). http://dicom.nema.org/dicom/2003/03_03PU.PDF. Accessed 31 Dec 2019

  2. Wyatt, J.C., Liu, J.L.Y.: Basic concepts in medical informatics. J. Epidemiol. Community Health. 56(11), 808 LP–812 (2002). https://doi.org/10.1136/jech.56.11.808

    Article  Google Scholar 

  3. Tayi, G.K., Ballou, D.P.: Examining Data Quality, vol. 41. ACM Press, New York (1998). https://doi.org/10.1145/269012.269021

  4. Freymann, J., Kirby, J., Perry, J., Clunie, D., Jaffe, C.: Image data sharing for biomedical research—meeting HIPAA requirements for de-identification. J. Digit. Imaging 25(1), 14–24 (2012). https://doi.org/10.1007/s10278-011-9422-x

    Article  Google Scholar 

  5. Hu, M., Pavlicek, W., Liu, P.T., et al.: Informatics in radiology: efficiency metrics for imaging device productivity. Radiographics 31(2), 603–616 (2011). https://doi.org/10.1148/rg.312105714

    Article  Google Scholar 

  6. Jahnen, A., Kohler, S., Hermen, J., Tack, D., Back, C.: Automatic computed tomography patient dose calculation using DICOM header metadata. Radiat. Prot. Dosimetry 147(1–2), 317–320 (2011). https://doi.org/10.1093/rpd/ncr338

    Article  Google Scholar 

  7. Prieto, C., Vano, E., Ten, J.I., et al.: Image retake analysis in digital radiography using DICOM header information. J. Digit. Imaging 22(4), 393–399 (2009). https://doi.org/10.1007/s10278-008-9135-y

    Article  Google Scholar 

  8. Klausz, R., Shramchenko, N.: Dose to population as a metric in the design of optimised exposure control in digital mammography. Radiat. Prot. Dosimetry 114(1–3), 369–374 (2005). https://doi.org/10.1093/rpd/nch579

    Article  Google Scholar 

  9. Chen, B., Wang, Y., Sun, X., et al.: Analysis of patient dose in full field digital mammography. Eur. J. Radiol. 81(5), 868–872 (2012). https://doi.org/10.1016/j.ejrad.2011.02.027

    Article  Google Scholar 

  10. Ko, M.-S., Kim, H.H., Cha, J.H., Shin, H.J., Kim, J.H., Kim, M.J.: Dose reduction in automatic optimization parameter of full-field digital mammography: breast phantom study. J. Breast Cancer 16(1), 90–96 (2013)

    Article  Google Scholar 

  11. McCullagh, J.B., Baldelli, P., Phelan, N.: Clinical dose performance of full field digital mammography in a breast screening programme. Br. J. Radiol. 84(1007), 1027–1033 (2011). https://doi.org/10.1259/bjr/83821596

    Article  Google Scholar 

  12. Morán, P., Chevalier, M., Ten, J.I., Fernández Soto, J.M., Vañó, E.: A survey of patient dose and clinical factors in a full-field digital mammography system. Radiat. Prot. Dosimetry 114(1–3), 375–379 (2005). https://doi.org/10.1093/rpd/nch514

    Article  Google Scholar 

  13. Chevalier, M., Morán, P., Ten, J.I., Fernández Soto, J.M., Cepeda, T., Vañó, E.: Patient dose in digital mammography. Med. Phys. 31(9), 2471–2479 (2004)

    Article  Google Scholar 

  14. Alizadeh Riabi, H., Mehnati, P., Mesbahi, A.: Evaluation of mean glandular dose in a full-field digital mammography unit in Tabriz, Iran. Radiat. Prot. Dosimetry 142(2–4), 222–227 (2010). https://doi.org/10.1093/rpd/ncq218

    Article  Google Scholar 

  15. Bor, D., Olgar, T., Aydin, E., Tükel, S.: Variations in breast doses for an automatic mammography unit. Diagn. Interv. Radiol. 14, 122–126 (2008)

    Google Scholar 

  16. Khorasani, R.: Computerized physician order entry and decision support: improving the quality of care. RadioGraphics 21(4), 1015–1018 (2001)

    Article  Google Scholar 

  17. Troude, P., Dozol, A., Soyer, P., et al.: Improvement of radiology requisition. Diagn. Interv. Imaging 95(1), 69–75 (2014). https://doi.org/10.1016/j.diii.2013.07.002

    Article  Google Scholar 

  18. Cohen, M.D., Curtin, S., Lee, R.: Evaluation of the quality of radiology requisitions for intensive care unit patients. Acad. Radiol. 13(2), 236–240 (2006). https://doi.org/10.1016/j.acra.2005.10.017

    Article  Google Scholar 

  19. Clément, O.: Iatrogénie des produits de contraste. J. Radiol. 86(5, Part 2), 567–572 (2005). https://doi.org/10.1016/S0221-0363(05)81409-X

    Article  Google Scholar 

  20. Güld, M.O., Keysers, D., Schubert, H., Wein, B.B., Bredno, J., Lehmann, T.M., Kohnen, M.: Quality of DICOM header information for image categorization. In: Siegel, E.L., Huang, H.K. (ed.) Medical Imaging 2002: PACS and Integrated Medical Information Systems: Design and Evaluation. SPIE, vol. 8 (2002). https://doi.org/10.1117/12.467017

  21. Santos, M., Bastião, L., Costa, C., Silva, A., Rocha, N.: Clinical data mining in small hospital PACS: contributions for radiology department improvement. In: Information Systems and Technologies for Enhancing Health and Social Care, pp. 236–251. IGI Global (2013). https://doi.org/10.4018/978-1-4666-3667-5.ch016

  22. Santos, M., Silva, A., Rocha, N.: Characterization of the stakeholders of medical imaging based on an image repository BT. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S., (eds.) Recent Advances in Information Systems and Technologies: Volume 2, pp. 805–814. Springer, Cham (2017)

    Google Scholar 

  23. Botsis, T., Hartvigsen, G., Chen, F., Weng, C.: Secondary use of EHR: data quality issues and informatics opportunities. Summit Trans. Bioinforma. 2010, 1–5 (2010). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041534/

  24. Kahn, M.G., Raebel, M.A., Glanz, J.M., Riedlinger, K., Steiner, J.F.: A pragmatic framework for single-site and multisite data quality assessment in electronic health record-based clinical research. Med. Care 50 Suppl(0), S21–S29. https://doi.org/10.1097/mlr.0b013e318257dd67

  25. Kahn, M.G., Brown, J.S., Chun, A.T., et al.: Transparent reporting of data quality in distributed data networks. EGEMS (Washington, DC) 3(1), 1052 (2015). https://doi.org/10.13063/2327-9214.1052

    Article  Google Scholar 

  26. HealthImaging: Medicare Paid $38 Million in Erroneously Documented Imaging Claims (2011)

    Google Scholar 

  27. Costa, C., Ferreira, C., Bastião, L., Ribeiro, L., Silva, A., Oliveira, J.: Dicoogle - an open source peer-to-peer PACS. J. Digit. Imaging 24(5), 848–856 (2011)

    Article  Google Scholar 

  28. Tsalafoutas, I.A.A., Panaretos, C., Thalassinou, S., et al.: A survey on average glandular doses in digital mammography units of four different manufacturers. Physica Med. 30, e112 (2017). https://doi.org/10.1016/j.ejmp.2014.07.317

    Article  Google Scholar 

  29. Miller, D., Livingstone, V., Herbison, G.P.: Interventions for relieving the pain and discomfort of screening mammography. Cochrane Database Syst. Rev. (1) (2008). https://doi.org/10.1002/14651858.cd002942.pub2

  30. Perry, N., Broeders, M., de Wolf, C., et al.: European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth edition—summary document. Ann Oncol. 19(4), 614–622 (2008). https://doi.org/10.1093/annonc/mdm481

Download references

Acknowledgments

This work was financially supported by National Funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project UI IEETA: UID/CEC/00127/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Pacheco Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, M., Silva, A., Rocha, N.P. (2020). DICOM Metadata Quality Analysis for Mammography Radiation Exposure Characterization. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Orovic, I., Moreira, F. (eds) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. Advances in Intelligent Systems and Computing, vol 1159. Springer, Cham. https://doi.org/10.1007/978-3-030-45688-7_16

Download citation

Publish with us

Policies and ethics