Skip to main content

Geostatistical Inversion

  • Chapter
  • First Online:

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Geostatistical inversion methods are routinely used to predict various geophysical parameters away from the boreholes using seismic and well log data. The geostatistics derives a surface using the values from the measured locations to estimate data points for each location in between the data points. The present chapter discusses different types of seismic attributes and their use in the interpretation of seismic data. Thereafter, four types of geostatistical methods namely single attribute analysis, multi-attribute regression, probabilistic neural network, and multi-layer feed-forward neural network methods are discussed. Initially, the mathematical background of these methods has been discussed and finally, the application of these methods to the real data is provided for better understanding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adeli H, Panakkat A (2009) A probabilistic neural network for earthquake magnitude prediction. Neural Netw 22(7):1018–1024

    Article  Google Scholar 

  • Anderson JK (1996) Limitations of seismic inversion for porosity and pore fluid: lessons from chalk reservoir characterization and exploration. In: SEG technical program expanded abstracts, society of exploration geophysicists, pp 309–312

    Google Scholar 

  • Barnes AE (1991) Instantaneous frequency and amplitude at the envelope peak of a constant-phase wavelet. Geophysics 56(7):1058

    Article  Google Scholar 

  • Barnes AE (1993) Instantaneous spectral bandwidth and dominant frequency with applications to seismic reflection data. Geophysics 58(3):419–428

    Article  Google Scholar 

  • Barnes AE (1994) Theory of two-dimensional complex seismic trace analysis. In: SEG technical program expanded abstracts, society of exploration geophysicists, pp 1580–1583

    Google Scholar 

  • Bosch M, Mukerji T, Gonzalez EF (2010) Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review. Geophysics 75(5):75A165–75A176

    Article  Google Scholar 

  • Brown AR (1996) Seismic attributes and their classification. Lead Edge 15(10):1090

    Article  Google Scholar 

  • Calderón-Macías C, Sen MK, Stoffa PL (1997) Hopfield neural networks, and mean-field annealing for seismic deconvolution and multiple attenuations. Geophysics 62(3):992–1002

    Article  Google Scholar 

  • Chambers RL, Yarus JM (2002) Quantitative use of seismic attributes for reservoir characterization. CSEG Recorder 27(6):14–25

    Google Scholar 

  • Chiles J (1988) Fractal and geostatistical methods for modeling of a fracture network. Math Geol 20(6):631–654

    Article  Google Scholar 

  • Chopra S, Marfurt KJ (2005) Seismic attributes—a historical perspective. Geophysics 70(5):3SO–28SO

    Article  Google Scholar 

  • Chopra S, Marfurt KJ (2007) Seismic attributes for prospect identification and reservoir characterization. Society of Exploration Geophysicists and European Association of Geoscientists and Engineers

    Google Scholar 

  • Cohen L, Lee C (1990) Instantaneous bandwidth for signals and spectrograms. In: International conference on acoustics, speech, and signal processing, IEEE, pp 2451–2454

    Google Scholar 

  • Dai H, MacBeth C (1994) Split shear-wave analysis using an artificial neural network. The first Break 12(12):605–613

    Article  Google Scholar 

  • Dowla FU, Taylor SR, Anderson RW (1990) Seismic discrimination with artificial neural networks: preliminary results with regional spectral data. Bull Seismol Soc Am 80(5):1346–1373

    Google Scholar 

  • Doyen PM (1988) Porosity from seismic data: a geostatistical approach. Geophysics 53(10):1263–1275

    Article  Google Scholar 

  • Draper N, Smith H (1966) Applied regression analysis. Wiley, New York

    Google Scholar 

  • Dubrule O (2003) Geostatistics for seismic data integration in Earth models. Distinguished instructor short course. Number 6. SEG Books

    Google Scholar 

  • Eskandari H, Rezaee MR, Mohammadnia M (2004) Application of multiple regression and artificial neural network techniques to predict shear wave velocity from well log data for a carbonate reservoir, south-west Iran. CSEG Recorder 29(7):42–48

    Google Scholar 

  • Haas A, Dubrule O (1994) Geostatistical inversion- a sequential method of stochastic reservoir modeling constrained by seismic data. First Break 12(11):561–569

    Article  Google Scholar 

  • Hampson D, Todorov T, Russell B (2000) Using multi-attribute transforms to predict log properties from seismic data. Explor Geophys 31(3):481–487

    Article  Google Scholar 

  • Hampson DP, Schuelke JS, Quirein JA (2001) Use of multiattribute transforms to predict log properties from seismic data. Geophysics 66(1):220–236

    Article  Google Scholar 

  • Huang Z, Shimeld J, Williamson M, Katsube J (1996) Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada. Geophysics 61(2):422–436

    Article  Google Scholar 

  • Iturrarán VU, Parra JO (2014) Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data. J Appl Geophys 107:45–54

    Article  Google Scholar 

  • Jones TA, Helwick SJ (1998) Method of generating 3-d geologic models incorporating geologic and geophysical constraints. US Patent 5:634–838

    Google Scholar 

  • Langer H, Nunnari G, Occhipinti L (1996) Estimation of seismic waveform governing parameters with neural networks. J Geophys Res Solid Earth 101(B9):20109–20118

    Article  Google Scholar 

  • Leiphart DJ, Hart BS (2001) Comparison of linear regression and a probabilistic neural network to predict porosity from 3-D seismic attributes in Lower Brushy Canyon channeled sandstones, southeast New Mexico. Geophysics 66(5):1349–1358

    Article  Google Scholar 

  • Leite EP, Vidal AC (2011) 3D porosity prediction from seismic inversion and neural networks. Comput Geosci 37(8):1174–1180

    Article  Google Scholar 

  • Lindseth RO (1979) Synthetic sonic logs a process for stratigraphic interpretation. Geophysics 44(1):3–26

    Article  Google Scholar 

  • Luo X, Patton AD, Singh C (2000) Real power transfer capability calculations using multi-layer feed-forward neural networks. IEEE Trans Power Syst 15(2):903–908

    Article  Google Scholar 

  • Macías D, Pérez-Pomares JM, García-Garrido L, Carmona R, Muñoz-Chápuli R (1998) Immunoreactivity of the ETS-1 transcription factor correlates with areas of epithelial-mesenchymal transition in the developing avian heart. Anat Embryol 198(4):307–315

    Article  Google Scholar 

  • Mahmood MF, Shakir U, Abuzar MK, Khan MA, Khattak N, Hussain HS, Tahir AR (2017) A probabilistic neural network approach for porosity prediction in the Balkassar area: a case study. Journal of Himalayan Earth Science 50:1

    Google Scholar 

  • Masri S, Smyth A, Chassiakos A, Caughey T, Hunter N (2000) Application of neural networks for the detection of changes in nonlinear systems. J Eng Mech 126(7):666–676

    Article  Google Scholar 

  • Masters T (1995) Advanced algorithms for neural networks: a C++ sourcebook. Wiley, Hoboken

    Google Scholar 

  • Maurya SP, Singh NP (2018) Comparing pre-and post-stack seismic inversion methods-a case study from Scotian Shelf, Canada. J Ind Geophys Union 22(6):585–597

    Google Scholar 

  • Maurya SP, Singh KH (2019) Predicting porosity by multivariate regression and probabilistic neural network using model-based and colored inversion as external attributes: a quantitative comparison. J Geol Soc India 93(2):207–212

    Article  Google Scholar 

  • Maurya SP, Singh KH, Singh NP (2019) Qualitative and quantitative comparison of geostatistical techniques of porosity prediction from the seismic and logging data: a case study from the Blackfoot Field, Alberta, Canada. Mar Geophys Res 40(1):51–71

    Article  Google Scholar 

  • Maurya SP, Singh KH, Kumar A, Singh NP (2017) Reservoir characterization using post-stack seismic inversion techniques based on a real coded genetic algorithm. J Geophys 39(2):95–103

    Google Scholar 

  • McCormack MD (1991) Neural computing in geophysics. Lead Edge 10(1):11–15

    Article  Google Scholar 

  • McCormack MD, Zaucha DE, Dushek DW (1993) First-break refraction event picking and seismic data-trace editing using neural networks. Geophysics 58(1):67–78

    Article  Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133

    Article  Google Scholar 

  • Murat ME, Rudman AJ (1992) Automated first arrival picking: a neural network approach 1. Geophys Prospect 40(6):587–604

    Article  Google Scholar 

  • Poulton MM, Sternberg BK, Glass CE (1992) Location of subsurface targets in geophysical data using neural networks. Geophysics 57(12):1534–1544

    Article  Google Scholar 

  • Pramanik AG et al (2004) Estimation of effective porosity using geostatistics and multi-attribute transforms a case study. SEG 69(2):352–372

    Google Scholar 

  • Romeo G (1994) Seismic signals detection and classification using artificial neural networks. Annals of Geophysics 37:3

    Google Scholar 

  • Röth G, Tarantola A (1994) Neural networks and inversion of seismic data. J Geophys Res Solid Earth 99(B4):6753–6768

    Article  Google Scholar 

  • Russell B, Hampson D, Schuelke J, Quirein J (1997) Multiattribute seismic analysis. Lead Edge 16(10):1439–1444

    Article  Google Scholar 

  • Russell SA, Reasoner C, Lay T, Revenaugh J (2001) Coexisting shear- and compressional-wave seismic velocity discontinuities beneath the central Pacific. Geophysical Research Letters 28(11):2281–2284

    Article  Google Scholar 

  • Schuelke JS, Quirein JA, Sag JF, Altany DA, Hunt PE (1997) Reservoir architecture and porosity distribution, Pegasus field, West Texas—an integrated sequence stratigraphic-seismic attribute study using neural networks. In SEG technical program expanded abstracts, society of exploration geophysicists, pp 668–671

    Google Scholar 

  • Schultz PS, Ronen S, Hattori M, Corbett C (1994) Seismic-guided estimation of log properties (Part 1: a data-driven interpretation methodology). Lead Edge 13(5):305–310

    Article  Google Scholar 

  • Singh S, Kanli AI, Sevgen S (2016) A general approach for porosity estimation using artificial neural network method: a case study from Kansas gas field. Stud Geophys Geod 60(1):130–140

    Article  Google Scholar 

  • Soubotcheva N, Stewart RR (2004) Predicting porosity logs from seismic attributes using geostatistics. CREWES Research Report -Volume 1:1–4

    Google Scholar 

  • Specht DF (1990) Probabilistic neural networks. Neural Netw 3(1):109–118

    Article  Google Scholar 

  • Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2(6):568–576

    Article  Google Scholar 

  • Svozil D, Kvasnicka V, Pospichal J (1997) Introduction to multi-layer feed-forward neural networks. Chemometr Intell Lab Syst 39(1):43–62

    Article  Google Scholar 

  • Swisi, A.A., 2009. Post-and Pre-stack attributes analysis and inversion of Blackfoot 3Dseismic dataset, Doctoral dissertation, University of Saskatchewan

    Google Scholar 

  • Taner MT (2001) Seismic attributes. CSEG recorder 26(7):49–56

    Google Scholar 

  • Taner MT, Koehler F, Sheriff RE (1979) Complex seismic trace analysis. Geophysics 44(6):1041–1063

    Article  Google Scholar 

  • Taner MT, Schuelke JS, O’Doherty R, Baysal E (1994) Seismic attributes revisited. In: SEG technical program expanded abstracts, society of exploration geophysicists, pp 1104–1106

    Google Scholar 

  • Taner MT, ODoherty R, Schuelke JS, Baysal E (1994) Seismic attributes revisited. Society of Exploration Geophysicists, Tulsa, OK (United States)

    Google Scholar 

  • Todorov TI (2000) Integration of 3C-3D seismic data and well logs for rock property estimation. The University of Calgary

    Google Scholar 

  • Tonn R (2002) Neural network seismic reservoir characterization in a heavy oil reservoir. Lead Edge 21(3):309–312

    Article  Google Scholar 

  • Torres-Verdin C, Victoria M, Merletti G, Pendrel J (1999) Trace-based and geostatistical inversion of 3-D seismic data for thin-sand delineation: an application in San Jorge Basin, Argentina. Lead Edge 18(9):1070–1077

    Article  Google Scholar 

  • Wang LX, Mendel JM (1992) Adaptive minimum prediction-error deconvolution and source wavelet estimation using Hopfield neural networks. Geophysics 57(5):670–679

    Article  Google Scholar 

  • Wu X, Ghaboussi J, Garrett JH Jr (1992) Use of neural networks in the detection of structural damage. Comput Struct 42(4):649–659

    Article  Google Scholar 

  • Zhang Y, Paulson KV (1997) Magnetotelluric inversion using regularized Hopfield neural networks. Geophys Prospect 45(5):725–743

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Maurya .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurya, S.P., Singh, N.P., Singh, K.H. (2020). Geostatistical Inversion. In: Seismic Inversion Methods: A Practical Approach. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-45662-7_7

Download citation

Publish with us

Policies and ethics