Skip to main content

Post-stack Seismic Inversion

  • Chapter
  • First Online:
Seismic Inversion Methods: A Practical Approach

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Post-stack seismic inversion utilizes post-stack seismic data along with well log data to estimate acoustic impedance. Post-stack seismic inversion is very fast compared to other pre-stack seismic inversion methods and provides a high-resolution subsurface image. This chapter discusses several types of post-stack seismic inversion methods namely model-based inversion, colored inversion, sparse spike inversion, and band-limited inversion. The chapter also includes the synthetic as well as real data examples of above seismic inversion methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansari HR (2014) Use seismic colored inversion and power-law committee machines based on imperial competitive algorithm for improving porosity prediction in a heterogeneous reservoir. J Appl Geophys 108:61–68

    Google Scholar 

  • Barrodale I, Roberts FD (1973) An improved algorithm for discrete l-1 linear approximation. SIAM J Numer Anal 10(5):839–848

    Google Scholar 

  • Barrodale I, Roberts F (1978) An efficient algorithm for discrete l1 linear approximation with linear constraints. SIAM J Numer Anal 15(3):603–611

    Google Scholar 

  • Bosch M, Mukerji T, Gonzalez EF (2010) Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review. Geophysics 75(5):75A165–75A176

    Google Scholar 

  • Brien OM, Sinclair AN, Kramer SM (1994) Recovery of a sparse spike time series by l/sub 1/norm deconvolution: IEEE Trans Signal Process 42:3353–3365

    Google Scholar 

  • Brossier R, Operto S, Virieux J (2015) Velocity model building from seismic reflection data by full-waveform inversion. Geophys Prospect 63(2):354–367

    Google Scholar 

  • Brown AR (2004) Interpretation of three-dimensional seismic data. AAPG Memoir 42. SEG Investigation in Geophysics, No. 9. AAPG, Tulsa

    Google Scholar 

  • Clochard V, Delépine N, Labat K, Ricarte P (2009) Post-stack versus pre-stack stratigraphic inversion for CO2 monitoring purposes: a case study for the saline aquifer of the Sleipner field. SEG Annual Meeting, Society of Exploration Geophysicists

    Google Scholar 

  • Cooke DA, Schneider WA (1983) Generalized linear inversion of reflection seismic data. Geophysics 48(6):665–676

    Google Scholar 

  • Debeye H, Riel VP (1990) Lp-norm deconvolution: geophysical Prospecting 38:381–403

    Google Scholar 

  • Ferguson RJ (1996) PS seismic inversion: modeling, processing and field examples. M.Sc. Thesis, University of Calgary, Canada

    Google Scholar 

  • Ferguson RJ, Margrave GF (1996) A simple algorithm for band-limited impedance inversion. CREWES Res Rep 8(21):1–10

    Google Scholar 

  • Goutsias J, Mendel JM (1986) Maximum-likelihood deconvolution: an optimization theory perspective. Geophysics 51:1206–1220

    Google Scholar 

  • Hampson D, Russell B (1985) Maximum-likelihood seismic inversion. Geophysics 50(8):1380–1381

    Google Scholar 

  • Helgesen J, Magnus I, Prosser S, Saigal G, Aamodt G, Dolberg D, Busman S (2000) Comparison of constrained sparse spike and stochastic inversion for porosity prediction at Kristin Field. Lead Edge 19(4):400–407

    Google Scholar 

  • Kormylo JJ, Mendel JM (1983) Maximum-likelihood seismic deconvolution. IEEE Trans Geosci Remote Sens 1:72–82

    Google Scholar 

  • Lancaster S, Whitcombe D (2000) Fast-track “colored” inversion. SEG Expanded Abstracts 19:1572–1575

    Google Scholar 

  • Leite EP (2010) Seismic model based inversion using matlab. Matlab-Modelling, Programming and Simulations, p 389

    Google Scholar 

  • Li Q (2001) LP sparse spike impedance inversion. Hampson-Russell Software Services Ltd, CSEG

    Google Scholar 

  • Li LM, Speed TP (2004) Deconvolution of sparse positive spikes. J Comput Graph Statist 13(4):853–870

    Google Scholar 

  • Loris I, Nolet G, Daubechies I, Dahlen FA (2007) Tomographic inversion using ℓ1-norm regularization of wavelet coefficients. Geophys J Int 170(1):359–370

    Google Scholar 

  • Mallick S (1995) Model-based inversion of amplitude-variations-with-offset data using a genetic algorithm. Geophysics 60(4):939–954

    Google Scholar 

  • Maurya SP, Sarkar P (2016) Comparison of post-stack seismic inversion methods: a case study from Blackfoot Field, Canada. Int J Sci Eng Res 7(8):1091–1101

    Google Scholar 

  • Maurya SP, Singh KH (2015) Reservoir characterization using model based inversion and probabilistic neural network. Discovery 49(228):122–127

    Google Scholar 

  • Maurya SP, Singh KH (2015b) LP and ML sparse spike inversion for reservoir characterization-a case study from Blackfoot area, Alberta, Canada. In 77th EAGE Conference and Exhibition 2015 (1):1–5

    Google Scholar 

  • Maurya SP, Singh NP (2017) Seismic colored inversion: a fast way to estimate rock properties from the seismic data. Carbonate Reservoir Workshop, Nov. 30th–Dec. 1th, 2017, IIT Bombay, India

    Google Scholar 

  • Maurya SP, Singh NP (2018) Application of LP and ML sparse spike inversion with probabilistic neural network to classify reservoir facies distribution—A case study from the Blackfoot Field, Canada. J Appl Geophys, Elsevier 159 (2018):511–521

    Google Scholar 

  • Maurya SP, Singh KH (2019) Predicting porosity by multivariate regression and probabilistic neural network using model-based and colored inversion as external attributes: a quantitative comparison. J Geol Soc India 93(2):131–252

    Google Scholar 

  • Maurya SP, Singh KH, Singh NP (2019) Qualitative and quantitative comparison of geostatistical techniques of porosity prediction from the seismic and logging data: a case study from the Blackfoot Field, Alberta, Canada. Marine Geophys Res 40(1):51–71

    Google Scholar 

  • Mendel JM (2012) Maximum-likelihood deconvolution: a journey into model-based signal processing. Springer Science & Business Media, Berlin

    Google Scholar 

  • Oldenburg D, Scheuer T, Levy S (1983) Recovery of the acoustic impedance from reflection seismograms. Geophysics 48(10):1318–1337

    Google Scholar 

  • Oliveira SAM, Lupinacci WM (2013) L1 norm inversion method for deconvolution in attenuating media. Geophys Prospect 61(4):771–777

    Google Scholar 

  • Quijada MF (2009) Estimating elastic properties of sandstone reservoirs using well logs and seismic inversion. Doctoral dissertation, University of Calgary

    Google Scholar 

  • Russell B (1988) Introduction to seismic inversion methods. The SEG Course Notes, Series 2

    Google Scholar 

  • Russell B, Hampson D (1991) Comparison of post-stack seismic inversion methods. In: SEG technical program expanded abstracts, Society of Exploration Geophysicists, pp 876–878

    Google Scholar 

  • Sacchi MD, Ulrych TJ (1995) High-resolution velocity gathers and offset space reconstruction. Geophysics 60(4):1169–1177

    Google Scholar 

  • Sacchi MD, Ulrych TJ (1996) Estimation of the discrete fourier transform, a linear inversion approach. Geophysics 61(4):1128–1136

    Google Scholar 

  • Stull RB (1973) Inversion rise model based on penetrative convection. J Atmos Sci 30(6):1092–1099

    Google Scholar 

  • Swisi AA (2009) Post-and pre-stack attribute analysis and inversion of Blackfoot 3d seismic dataset. M.Sc. Thesis, University of Calgary

    Google Scholar 

  • Velis DR (2006) Parametric sparse-spike deconvolution and the recovery of the acoustic impedance. In: SEG annual meeting. Society of Exploration Geophysicists, pp 2141–2144

    Google Scholar 

  • Velis DR (2007) Stochastic sparse-spike deconvolution. Geophysics 73(1):R1–R9

    Google Scholar 

  • Vestergaard PD, Mosegaard K (1991) Inversion of post-stack seismic data using simulated annealing. Geophys Prospect 39(5):613–624

    Google Scholar 

  • Wang Y (2010) Seismic impedance inversion using l1-norm regularization and gradient descent methods. J Inverse Ill-Posed Prob 18(7):823–838

    Google Scholar 

  • Wang X, Shiguo Wu, Ning Xu, Zhang G (2006) Estimation of gas hydrate saturation using constrained sparse spike inversion: case study from the Northern South China. Sea Terr Atmos Ocean Sci 17(4):799–813

    Google Scholar 

  • Waters KH, Waters KH (1987) Reflection seismology: a tool for energy resource exploration. Wiley, New York

    Google Scholar 

  • Yilmaz O (2001) Seismic data analysis, vol 1. Society of exploration geophysicists, Tulsa, OK

    Google Scholar 

  • Zhang R, Castagna J (2011) Seismic sparse-layer reflectivity inversion using basis pursuit decomposition. Geophysics 76:R147–R158

    Google Scholar 

  • Zhang Q, Yang R, Meng L, Zhang T, Li P (2016) The description of reservoiring model for gas hydrate based on the sparse spike inversion. In: 7th international conference on environmental and engineering geophysics & summit forum of Chinese Academy of Engineering on Engineering Science and Technology. https://doi.org/10.2991/iceeg-16.2016.27

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Maurya .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurya, S.P., Singh, N.P., Singh, K.H. (2020). Post-stack Seismic Inversion. In: Seismic Inversion Methods: A Practical Approach. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-45662-7_3

Download citation

Publish with us

Policies and ethics