Skip to main content

Global Solutions

  • Chapter
  • First Online:
Critical Point Theory
  • 447 Accesses

Abstract

In the previous two chapters, we studied the semilinear Schrödinger equation

$$\displaystyle - \Delta u + V(x) u = f(x,u), \quad u \in H^1({\mathbb R^n}), $$

where V (x) is a given potential. We needed the linear operator − Δu + V (x)u to have a nonempty resolvent. To achieve this, we assumed that V (x) was periodic in x. This forced us to assume the same for f(x, u), and we had to deal with several restrictions in our methods. In this chapter we study the equation without making any periodicity assumptions on the potential or on the nonlinear term. But we must be assured that the linear operator has nonempty resolvent. To accomplish this, we make assumptions on V (x) which guarantee that the essential spectrum of − Δu + V (x)u is the same as that of − Δu. In other words, our assumptions are such that the potential does not change the essential spectrum of the linear operator. This results in [0, ) being the absolutely continuous part of the spectrum. There may be no negative eigenvalues, a finite number of negative eigenvalues, or an infinite number of negative eigenvalues. If there are an infinite number of negative eigenvalues, they will converge to 0. In each case we obtain nontrivial solutions. We also obtain least energy solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alama S, Li YY. On “multibump” bound states for certain semilinear elliptic equations. Indiana Univ Math J. 1992;41(4):983–1026.

    Article  MathSciNet  Google Scholar 

  2. Angenent S. The shadowing lemma for elliptic PDE. In: Dynamics of infinite-dimensional systems (Lisbon, 1986). NATO Advanced science institutes series F: computer and systems sciences, vol. 37. Berlin: Springer; 1987. pp. 7–22.

    Chapter  Google Scholar 

  3. Bartsch T, Ding Y. On a nonlinear Schrödinger equation with periodic potential. Math Ann. 1999;313:15–37.

    Article  MathSciNet  Google Scholar 

  4. Bartsch T, Wang Z. Existence and multiplicity results for some superlinear elliptic problems on \(\mathbb R^N.\) Comm. PDE 1995;20:1725–1741.

    Article  Google Scholar 

  5. Bartsch T, Pankov A, Wang Z-Q. Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math. 2001;3(4):549–569.

    Article  MathSciNet  Google Scholar 

  6. Berestycki H, Lions P-L. Nonlinear scalar field equations. I. Existence of a ground state. Arch Ration Mech Anal. 1983;82(4):313–345.

    Article  MathSciNet  Google Scholar 

  7. Chabrowski J, Szulkin A. On a semilinear Schrödinger equation with critical Sobolev exponent. Proc Amer Math Soc. 2002;130(1):85–93.

    Article  MathSciNet  Google Scholar 

  8. Costa DG. On a class of elliptic systems in \(\mathbb R^N\). Electron J Diff Eq. 1994;7:1–14.

    MathSciNet  Google Scholar 

  9. Ding Y, Szulkin A. Bound states for semilinear Schrödinger equations with sign-changing potential. Calc Var Partial Diff Eq. 2007;29(3):397–419.

    Article  Google Scholar 

  10. Furtado MF, Maia LA, Silva EAB. On a double resonant problem in \(\mathbb {R}^{N}\). Diff Int Eq. 2002;15(11):1335–1344.

    MathSciNet  MATH  Google Scholar 

  11. Kryszewski W, Szulkin A. Generalized linking theorems with an application to semilinear Schrodinger equation. Adv Diff Eq. 1998;3:441–472.

    MathSciNet  MATH  Google Scholar 

  12. Kryszewski W, Szulkin A. Infinite-dimensional homology and multibump solutions. J Fixed Point Theory Appl. 2009;5(1):1–35.

    Article  MathSciNet  Google Scholar 

  13. Li YQ, Wang ZQ, Zeng J. Ground states of nonlinear Schrödinger equations with potentials. (English, French summary) Ann Inst H Poincaré Anal Non Linéaire 2006;23(6):829–837.

    Article  Google Scholar 

  14. Omana W, Willem M. Homoclinic orbits for a class of Hamiltonian systems. Diff Int Eq. 1992;5:1115–1120.

    MathSciNet  MATH  Google Scholar 

  15. Pankov A. Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J Math. 2005;73:259–287.

    Article  MathSciNet  Google Scholar 

  16. Rabinowitz PH. Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics. vol. 65. Providence: American Mathematical Society; 1986.

    Google Scholar 

  17. Schechter M. Operator methods in quantum mechanics. New York: Elsevier; 1981.

    MATH  Google Scholar 

  18. Schechter M. Spectra of partial differential operators. North-Holland series in applied mathematics and mechanics, vol. 14. 2nd ed. Amsterdam: North-Holland; 1986. xiv+310. ISBN: 0-444-87822-X.

    Google Scholar 

  19. Schechter M. A variation of the mountain pass lemma and applications. J London Math Soc. 1991;44:491–502.

    Article  MathSciNet  Google Scholar 

  20. Schechter M. Linking methods in critical point theory. Boston: Birkhauser; 1999.

    Book  Google Scholar 

  21. Schechter M. The use of Cerami sequences in critical point theory. Abstr Appl Anal. 2007;2007: Art. ID 58948, 28.

    Google Scholar 

  22. Schechter M, Zou W. Weak linking theorems and Schrödinger equations with critical Sobolev exponent. ESAIM Control Optim Calc Var. 2003;9:601–619 (Electronic).

    MathSciNet  MATH  Google Scholar 

  23. Schechter M, Zou W. Semi-classical bound states of Schrödinger equations. Math Proc Cambridge Philos Soc. 2014;156(1):167–181.

    Article  MathSciNet  Google Scholar 

  24. Szulkin A, Weth T. Ground state solutions for some indefinite variational problems. J Funct Anal. 2009;257(12):3802–3822.

    Article  MathSciNet  Google Scholar 

  25. Troestler C, Willem M. Nontrivial solution of a semilinear Schrödinger equation. Comm Partial Diff Eq. 1996;21(9–10):1431–1449.

    Article  Google Scholar 

  26. Willem M, Zou W. On a Schrödinger equation with periodic potential and spectrum point zero. Indiana Univ Math J. 2003;52(1):109–132.

    Article  MathSciNet  Google Scholar 

  27. Yang M. Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities. Nonlinear Anal. 2010;72(5):2620–2627.

    Article  MathSciNet  Google Scholar 

  28. Yang M, Chen W, Ding Y. Solutions for periodic Schrödinger equation with spectrum zero and general superlinear nonlinearities. J Math Anal Appl. 2010;364(2):404–413.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schechter, M. (2020). Global Solutions. In: Critical Point Theory. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-45603-0_9

Download citation

Publish with us

Policies and ethics