Skip to main content

The Monotonicity Trick

  • Chapter
  • First Online:
Critical Point Theory
  • 466 Accesses

Abstract

The use of linking or sandwich pairs cannot produce critical points by themselves. The most they can produce are sequences satisfying

$$\displaystyle G(u_k)\to a,\quad (1+\|u_k\|)G'(u_k)\to 0. $$

If such a sequence has a convergent subsequence, we obtain a critical point. Lacking such information, we cannot eliminate the possibility that

$$\displaystyle \|u_k\| \to \infty , $$

which destroys any hope of obtaining a critical point from this sequence. On the other hand, knowing that the sequence is bounded does not guarantee a critical point either. But there is a difference. In many applications, knowing that a sequence satisfying (4.1) is bounded allows one to obtain a convergent subsequence. This is just what is needed. For such applications it would be very helpful if we could obtain a bounded sequence satisfying (4.1). This leads to the question: Is there anything we can do to obtain such a sequence?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeanjean L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on R N. Proc Roy Soc Edinburgh 1999;A129:787–809.

    Article  MathSciNet  Google Scholar 

  2. Jeanjean L. Local conditions insuring bifurcation from the continuous spectrum. Math Z. 1999;232:651–664.

    Article  MathSciNet  Google Scholar 

  3. Schechter M. Linking methods in critical point theory. Boston: Birkhauser; 1999.

    Book  Google Scholar 

  4. Schechter M. Monotonicity methods for infinite dimensional sandwich systems. Discrete Contin Dyn Syst. 2010;28(2):455–468.

    Article  MathSciNet  Google Scholar 

  5. Schechter M. Nonautonomous second order Hamiltonian systems. Pacific J Math. 2011;251:431–452.

    Article  MathSciNet  Google Scholar 

  6. Schechter M. Noncooperative elliptic systems. Z Angew Math Phys. 2011;62(4):649–666.

    Article  MathSciNet  Google Scholar 

  7. Schechter M. Superlinear Schrödinger operators. J Funct Anal. 2012;262:2677–2694.

    Article  MathSciNet  Google Scholar 

  8. Schechter M. Ground state solutions of superlinear Schrödinger equations. Comm Appl Nonlinear Anal. 2012;19(1):91–97.

    MathSciNet  MATH  Google Scholar 

  9. Schechter M. Monotonicity methods for noncooperative elliptic systems. Complex Var Elliptic Eq. 2012;57(11):1163–1178.

    Article  MathSciNet  Google Scholar 

  10. Schechter M. Ground state solutions for non-autonomous dynamical systems. J Math Phys. 2014;55(10):101504, 13.

    Article  MathSciNet  Google Scholar 

  11. Schechter M. Periodic second order superlinear Hamiltonian systems J Math Anal Appl. 2015;426(1):546–562.

    Article  MathSciNet  Google Scholar 

  12. Schechter M. Nonlinear Schrödinger operators with zero in the spectrum. Z Angew Math Phys. 2015;66(5):2125–2141.

    Article  MathSciNet  Google Scholar 

  13. Schechter M. Global solutions of nonlinear Schrödinger equations. Calc Var Partial Diff Eq. 2017;56(2):Art. 40, 17.

    Google Scholar 

  14. Schechter M, Zou W. Super-linear problems. Pacific J Math. 2004;214(1):145–160.

    Article  MathSciNet  Google Scholar 

  15. Struwe M. The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 1988;160:19–64.

    Article  MathSciNet  Google Scholar 

  16. Struwe M. Variational methods. 2nd ed. Berlin: Springer; 1996.

    Book  Google Scholar 

  17. Willem M, Zou W. On a Schrödinger equation with periodic potential and spectrum point zero. Indiana Univ Math J. 2003;52(1):109–132.

    Article  MathSciNet  Google Scholar 

  18. Zou W. Multiple solutions for asymptotically linear elliptic systems. J Math Anal Appl. 2001; 255(1):213–229.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schechter, M. (2020). The Monotonicity Trick. In: Critical Point Theory. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-45603-0_4

Download citation

Publish with us

Policies and ethics