Skip to main content

Second Order Hamiltonian Systems

  • Chapter
  • First Online:
Critical Point Theory
  • 468 Accesses

Abstract

We consider the system

$$\displaystyle -\ddot x(t)=\; B(t)x(t) +\nabla _xV(t,x(t)), $$

where

$$\displaystyle x(t)=(x_1(t),\cdots ,x_n(t)) $$

is a map from I = [0, T] to \(\mathbb R^n\) such that each component x j(t) is a periodic function in H 1 with period T, and the function V (t, x) = V (t, x 1, ⋯ , x n) is continuous from \(\mathbb R^{n+1}\) to \(\mathbb R\) with

$$\displaystyle \nabla _xV(t,x)=(\partial V/\partial x_1,\cdots ,\partial V/ \partial x_n) \in C(\mathbb R^{n+1},\mathbb R^n). $$

For each \(x \in \mathbb R^n,\) the function V (t, x) is periodic in t with period T.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosetti A, Coti Zelati V. Periodic solutions of singular Lagrangian systems. Boston: Birkhäuser; 1993.

    Book  Google Scholar 

  2. Antonacci F. Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign. Nonlinear Anal. 1997;29:1353–1364.

    Article  MathSciNet  Google Scholar 

  3. Antonacci F, Magrone P. Second order nonautonomous systems with symmetric potential changing sign. Rend Mat Appl. 1998;18:367–379.

    MathSciNet  MATH  Google Scholar 

  4. Barletta G, Livrea R. Existence of three periodic solutions for a non-autonomous second order system. Matematiche (Catania) 2002;57:205–215.

    MathSciNet  MATH  Google Scholar 

  5. Berger MS, Schechter M. On the solvability of semilinear gradient operator equations. Adv Math. 1977;25:97–132.

    Article  MathSciNet  Google Scholar 

  6. Bonanno G, Livrea R. Periodic solutions for a class of second-order Hamiltonian systems. Electron J Diff Eq. 2005;115:13.

    MathSciNet  MATH  Google Scholar 

  7. Bonanno G, Livrea R. Multiple periodic solutions for Hamiltonian systems with not coercive potential. J Math Anal Appl. 2010;363:627–638.

    Article  MathSciNet  Google Scholar 

  8. Ding Y, Girardi M. Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign. Dynam Syst Appl. 1993;2:131–145.

    MathSciNet  MATH  Google Scholar 

  9. Faraci F. Multiple periodic solutions for second order systems with changing sign potential. J Math Anal Appl. 2006;319:567–578.

    Article  MathSciNet  Google Scholar 

  10. Faraci F, Iannizzotto A. A multiplicity theorem for a perturbed second-order non-autonomous system. Proc Edinb Math Soc. 2006; 49(2):267–275.

    Article  MathSciNet  Google Scholar 

  11. Faraci F, Livrea G. Infinitely many periodic solutions for a second-order nonautonomous system. Nonlinear Anal. 2003;54:417–429.

    Article  MathSciNet  Google Scholar 

  12. Guo Z, Xu Y. Existence of periodic solutions to second-order Hamiltonian systems with potential indefinite in sign. Nonlinear Anal. 2002;51:1273–1283.

    Article  MathSciNet  Google Scholar 

  13. Han Z. 2π-periodic solutions to ordinary differential systems at resonance. Acta Math Sinica (Chinese) 2000;43:639–644.

    MathSciNet  MATH  Google Scholar 

  14. Jiang M. Periodic solutions of second order superquadratic Hamiltonian systems with potential changing sign I. J Diff Eq. 2005;219:323–341.

    Article  MathSciNet  Google Scholar 

  15. Jiang M. Periodic solutions of second order superquadratic Hamiltonian systems with potential changing sign II. J Diff Eq. 2005;219:342–362.

    Article  MathSciNet  Google Scholar 

  16. Li S, Zou W. Infinitely many solutions for Hamiltonian systems. J Diff Eq. 2002;186:141–164.

    Article  MathSciNet  Google Scholar 

  17. Mawhin J. Forced second order conservative systems with periodic nonlinearity. Ann Inst Poincaré Anal Non Linéare 1989;6:415–434.

    Article  MathSciNet  Google Scholar 

  18. Mawhin J, Willem M. Critical point theory and Hamiltonian systems. Berlin: Springer; 1989.

    Book  Google Scholar 

  19. Pipan J, Schechter M. Non-autonomous second order Hamiltonian systems. J Diff Eq. 2014;257(2):351–373.

    Article  MathSciNet  Google Scholar 

  20. Schechter M. Operator methods in quantum mechanics. New York: Elsevier; 1981.

    MATH  Google Scholar 

  21. Schechter M. A variation of the mountain pass lemma and applications. J London Math Soc. 1991;44:491–502.

    Article  MathSciNet  Google Scholar 

  22. Schechter M. A generalization of the saddle point method with applications. Ann Polon Math. 1992;57(3):269–281.

    Article  MathSciNet  Google Scholar 

  23. Schechter M. New saddle point theorems. In: Generalized functions and their applications (Varanasi, 1991). New York: Plenum; 1993. pp. 213–219.

    Chapter  Google Scholar 

  24. Schechter M. Infinite-dimensional linking. Duke Math J. 1998;94(3):573–595.

    Article  MathSciNet  Google Scholar 

  25. Schechter M. Linking methods in critical point theory. Boston: Birkhauser; 1999.

    Book  Google Scholar 

  26. Schechter M. Ground state solutions for non-autonomous dynamical systems. J Math Phys. 2014;55(10):101504, 13.

    Article  MathSciNet  Google Scholar 

  27. Shilgba LK. Periodic solutions of non-autonomous second order systems with quasisubadditive potential. J Math Anal Appl. 1995;189:671–675.

    Article  MathSciNet  Google Scholar 

  28. Shilgba LK. Existence result for periodic solutions of a class of Hamiltonian systems with super quadratic potential. Nonlinear Anal. 2005;63:565–574.

    Article  MathSciNet  Google Scholar 

  29. Sirakov B. Existence and multiplicity of solutions of semi-linear elliptic equations in RN. Calc Var. 2000;11:119–142.

    Article  MathSciNet  Google Scholar 

  30. Struwe M. The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 1988;160:19–64.

    Article  MathSciNet  Google Scholar 

  31. Struwe M. Variational methods. 2nd ed. Berlin: Springer; 1996.

    Book  Google Scholar 

  32. Tang CL. Periodic solutions of nonautonomous second order systems with sublinear nonlinearity. Proc Amer Math Soc. 1998;126:3263–3270.

    Article  MathSciNet  Google Scholar 

  33. Tang CL, Wu XP. Periodic solutions for second order systems with not uniformly coercive potential. J Math Anal Appl. 2001;259(2):386–397.

    Article  MathSciNet  Google Scholar 

  34. Tang CL, Wu XP. Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems. J Math Anal Appl. 2002;275(2):870–882.

    Article  MathSciNet  Google Scholar 

  35. Tang XH, Xiao L. Existence of periodic solutions to second-order Hamiltonian systems with potential indefinite in sign. Nonlinear Anal. 2008;69:3999–4011.

    Article  MathSciNet  Google Scholar 

  36. Tintarev K. Solutions to elliptic systems of Hamiltonian type in R N. Electron J Diff Eq. 1999;1999(29):11 pp.

    Google Scholar 

  37. Willem M. Minimax theorems. Boston: Birkharser; 1996.

    Book  Google Scholar 

  38. Wu XP, Tang CL. Periodic solutions of a class of nonautonomous second order systems. J Math Anal Appl. 1999;236:227–235.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schechter, M. (2020). Second Order Hamiltonian Systems. In: Critical Point Theory. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-45603-0_10

Download citation

Publish with us

Policies and ethics