Skip to main content

Emerging Horizons for Industrial Applications of Predatory Bacteria

  • Chapter
  • First Online:
The Ecology of Predation at the Microscale

Abstract

This chapter reviews the potential of the predatory bacteria Bdellovibrio bacteriovorus, an obligate predator of other gram-negative bacteria, as a biotechnological tool. Due to the unique lifestyle and the different applications, predatory bacteria have awakened interest to be developed as a lytic tool. The lack of physiological and metabolic information makes difficult this development. However, in the last years, different approaches have been described in order to understand the physiology, morphology, and metabolism of the predators, as well as the population dynamics of the prey-predator interactions. Besides its potential of “living antibiotic”, predatory bacteria have been proposed as a biocontrol agent in the food industry or aquaculture. A recent work using B. bacteriovorus as a biological lytic tool for the recovery of intracellular bioproducts highlighted the potential use of predators in industrial bioprocesses. The bottlenecks of using other Bdellovibrio and like organisms (BALOs) have been also considered and discussed during this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhafez AA, et al. Optimization of β-carotene production from agro-industrial by-products by Serratia marcescens ATCC 27117 using Plackett–Burman design and central composite design. Annals of Agricultural Sciences, Faculty of Agriculture, Ain Shams University. 2016;61(1):87–96. https://doi.org/10.1016/j.aoas.2016.01.005.

    Article  Google Scholar 

  • Allouche N, et al. Use of whole cells of. 2004;70(4):2105–9. https://doi.org/10.1128/AEM.70.4.2105.

  • Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ, Lerner TR, et al. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol. 2011;77:5794–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avidan O, et al. Identification and Characterization of Differentially-Regulated Type IVb Pilin Genes Necessary for Predation in Obligate Bacterial Predators. Scientific reports Nature Publishing Group. 2017;7(1):1013. https://doi.org/10.1038/s41598-017-00951-w.

    Article  CAS  Google Scholar 

  • Bagheri Lotfabad T, et al. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol–gel immobilized cells. Colloids and Surfaces B: Biointerfaces Elsevier BV. 2017;152:159–68. https://doi.org/10.1016/j.colsurfb.2017.01.024.

    Article  CAS  Google Scholar 

  • Banitz T, Johst K, Wick LY, Fetzer I, Harms H, Frank K. The relevance of conditional dispersal for bacterial colony growth and biodegradation. Microb Ecol. 2012;63:339–47.

    PubMed  Google Scholar 

  • Bratanis E, Molina H, Naegeli A, Collin M, Lood R. BspK, a serine protease from the predatory bacterium Bdellovibrio bacteriovorus with utility for analysis of therapeutic antibodies. Appl Environ Microbiol. 2017;83:e03037–16. https://doi.org/10.1128/AEM.03037-03016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao H, He S, Wang H, Hou S, Lu L, Yang X. Bdellovibrios, potential biocontrol bacteria against pathogenic Aeromonas hydrophila. Vet Microbiol. 2012;154:413–8.

    PubMed  Google Scholar 

  • Cao HP, Yang YB, Lu LQ, Yang XL, Ai XH. Effect of copper sulfate on Bdellovibrio growth and bacteriolytic activity towards gibel carp-pathogenic Aeromonas hydrophila. Can J Microbiol. 2018;64:1054–8.

    CAS  PubMed  Google Scholar 

  • Capeness MJ, Lambert C, Lovering AL, Till R, Uchida K, Chaudhuri R, et al. Activity of Bdellovibrio hit locus proteins, Bd0108 and Bd0109, links type IVa pilus extrusion/retraction status to prey-independent growth signalling. Plos One. 2013;8:e79759. https://doi.org/10.71371/journal.pone.0079759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CY, et al. The Bdellovibrio bacteriovorus twin-arginine transport system has roles in predatory and prey-independent growth. Microbiology. 2011;157(11):3079–93. https://doi.org/10.1099/mic.0.052449-0.

    Article  CAS  PubMed  Google Scholar 

  • Chanprateep S. Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng. 2010;110:621–32.

    CAS  PubMed  Google Scholar 

  • Chanyi RM, Koval SF. Role of type IV Pili in predation by Bdellovibrio bacteriovorus. PLoS One. 2014;9(11) https://doi.org/10.1371/journal.pone.0113404.

  • Chen CY, Yen SH, Chung YC. Combination of photoreactor and packed bed bioreactor for the removal of ethyl violet from wastewater. Chemosphere. 2014;117:494–501.

    CAS  PubMed  Google Scholar 

  • Chen Z, et al. Metabolic engineering of klebsiella pneumoniae for the production of 2-butanone from glucose. PLoS One. 2015;10(10):1–10. https://doi.org/10.1371/journal.pone.0140508.

    Article  CAS  Google Scholar 

  • Chmielewski RAN, Frank JF. Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf. 2015;2:22–32.

    Google Scholar 

  • Cotter TW, Thomashow MF. A conjugation procedure for Bdellovibrio bacteriovorus and its use to identify DNA sequences that enhance the plaque-forming ability of a spontaneous host-independent mutant. J Bacteriol. 1992a;174(19):6011–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter TW, Thomashow MF. Identification of a Bdellovibrio bacteriovorus genetic locus, hit, associated with the host-independent phenotype. J Bacteriol. 1992b;174(19):6018–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dashiff A, Junka RA, Libera M, Kadouri DE. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol. 2011a;110:431–44.

    CAS  PubMed  Google Scholar 

  • Dashiff A, Keeling TG, Kadouri DE. Inhibition of predation by Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus via host cell metabolic activity in the presence of carbohydrates. Appl Environ Microb. 2011b;77:2224–31.

    CAS  Google Scholar 

  • Davidov Y, Jurkevitch E. Predation between prokaryotes and the origin of eukaryotes. BioEssays. 2009;31:748–57.

    CAS  PubMed  Google Scholar 

  • de Dios Caballero J, Vida R, Cobo M, Maiz L, Suarez L, Galeano J, et al. Individual patterns of complexity in cystic fibrosis lung microbiota, including predator Bacteria, over a 1-year period. MBio. 2017;8(5):e00959–17. https://doi.org/10.01128/mBio.00959-00917.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Eugenio LI, Garcia P, Luengo JM, Sanz JM, San Roman J, Garcia JL, et al. Biochemical evidence that phaZ gene encodes a specific intracellular medium chain length polyhydroxyalkanoate depolymerase in Pseudomonas putida KT2442 – characterization of a paradigmatic enzyme. J Biol Chem. 2007;282:4951–62.

    PubMed  Google Scholar 

  • Di Gioia D, et al. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. Journal of Biotechnology Elsevier BV. 2011;156(4):309–16. https://doi.org/10.1016/j.jbiotec.2011.08.014.

    Article  CAS  Google Scholar 

  • Dori-Bachash M, et al. Bacterial intein-like domains of predatory bacteria: a new domain type characterized in Bdellovibrio bacteriovorus. Funct Integr Genomics. 2009;9(2):153–66. https://doi.org/10.1007/s10142-008-0106-7.

    Article  CAS  PubMed  Google Scholar 

  • Du J, Shao ZY, Zhao HM. Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biot. 2011;38:873–90.

    CAS  Google Scholar 

  • Dwidar M, Yokobayashi Y. Controlling Bdellovibrio bacteriovorus gene expression and predation using synthetic riboswitches. ACS Synth Biol. 2017;6:2035–41.

    CAS  PubMed  Google Scholar 

  • Dwidar M, Im H, Seo JK, Mitchell RJ. Attack-phase Bdellovibrio bacteriovorus responses to extracellular nutrients are analogous to those seen during late Intraperiplasmic growth. Microbial Ecol. 2017;74:937–46.

    CAS  Google Scholar 

  • Elkenawy NM, et al. Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnology Reports Elsevier BV. 2017;14:47–53. https://doi.org/10.1016/j.btre.2017.04.001.

    Article  Google Scholar 

  • Evans KJ, Lambert C, Sockett RE. Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili. J Bacteriol. 2007;189(13):4850–9. https://doi.org/10.1128/JB.01942-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton AK, Hobley L, Butan C, Subramaniam S, Sockett RE. A coiled-coil-repeat protein ‘Ccrp’ in Bdellovibrio bacteriovorus prevents cellular indentation, but is not essential for vibroid cell morphology. FEMS Microbiol Lett. 2010a;313:89–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton AK, et al. Manipulating each MreB of Bdellovibrio bacteriovorus gives diverse morphological and predatory phenotypes. J Bacteriol. 2010;192(5):1299–311. https://doi.org/10.1128/JB.01157-09.

    Article  CAS  PubMed  Google Scholar 

  • Flannagan RS, Valvano MA, Koval SF. Downregulation of the motA gene delays the escape of the obligate predator Bdellovibrio bacteriovirus 109J from bdelloplasts of bacterial prey cells. Microbiology. 2004;150(3):649–56. https://doi.org/10.1099/mic.0.26761-0.

    Article  CAS  PubMed  Google Scholar 

  • Furuno S, Pazolt K, Rabe C, Neu TR, Harms H, Wick LY. Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems. Environ Microbiol. 2010;12:1391–8.

    CAS  PubMed  Google Scholar 

  • Garcia-Ochoa F, Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv. 2009;27:153–76.

    CAS  PubMed  Google Scholar 

  • Goel A, Wortel MT, Molenaar D, Teusink B. Metabolic shifts: a fitness perspective for microbial cell factories. Biotechnol Lett. 2012;34:2147–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guelin A, Lepine P, Lamblin D. Water bactericidal activity and the part played by Bdellovibrio bacteriovorus. Ann Inst Pasteur (Paris). 1967;113:660–5.

    CAS  Google Scholar 

  • Gutnick DL, Allon R, Levy C, Petter R, M. W. Applications of acinetobacter as an industrial microorganism. The Biology of Acinetobacter. 1991:411–41.

    Google Scholar 

  • Harada T, et al. Production of a new acidic polysaccharide, succinoglucan by alcaligenes faecalis var. myxogenes. Agric Biol Chem. 1965;29(8):757–62. https://doi.org/10.1080/00021369.1965.10858462.

    Article  CAS  Google Scholar 

  • Harikrishnan R, Balasundaram C, Heo MS. Effect of probiotics enriched diet on Paralichthys olivaceus infected with lymphocystis disease virus (LCDV). Fish Shellfish Immunol. 2010;29:868–74.

    PubMed  Google Scholar 

  • Herencias C, Prieto MA, Martínez V, Smith KS. Determination of the predatory capability of Bdellovibrio bacteriovorus HD100. Bio Protocol. 2017;7:e2177.

    Google Scholar 

  • Hobley L, et al. Genome analysis of a simultaneously predatory and prey-independent, novel Bdellovibrio bacteriovorus from the River Tiber, supports in silico predictions of both ancient and recent lateral gene transfer from diverse bacteria. BMC Genomics. 2012;13:670. https://doi.org/10.1186/1471-2164-13-670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang JCC, Starr MP. Effects of calcium and magnesium ions and host viability on growth of Bdellovibrios. Antonie Van Leeuwenhoek. 1973;39:151–67.

    CAS  PubMed  Google Scholar 

  • Im H, Choi SY, Son S, Mitchell RJ. Combined application of bacterial predation and Violacein to kill polymicrobial pathogenic communities. Sci Rep. 2017;7:14415. https://doi.org/10.11038/s41598-14017-14567-14417.

    Article  PubMed  PubMed Central  Google Scholar 

  • Im H, Dwidar M, Mitchell RJ. Bdellovibrio bacteriovorus HD100, a predator of gram-negative bacteria, benefits energetically from Staphylococcus aureus biofilms without predation. ISME J. 2018;12:2090–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquel N, Lo CW, Wei YH, Wu HS, Wang SS. Isolation and purification of bacterial poly (3-hydroxyalkanoates). Biochem Eng J. 2008;39:15–27.

    CAS  Google Scholar 

  • Jurkevitch E, Davidov Y. Phylogenetic diversity and evolution of predatory prokaryotes. ACS Division of Fuel Chemistry, Preprints. 2006.

    Google Scholar 

  • Kadouri D, O’Toole GA. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol. 2005;71:4044–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadouri DE, Tran A. Measurement of predation and biofilm formation under different ambient oxygen conditions using a simple gasbag-based system. Appl Environ Microbiol. 2013;79:5264–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, et al. Histamine production by Morganella morganii in mackerel, albacore, mahi-mahi, and salmon at various storage temperatures. J Food Sci. 2002;67(4):1522–8. https://doi.org/10.1111/j.1365-2621.2002.tb10316.x.

    Article  CAS  Google Scholar 

  • Koval SF, Hynes SH. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J Bacteriol. 1991;173:2244–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar CG, Anand SK. Significance of microbial biofilms in food industry: a review. Int J Food Microbiol. 1998;42:9–27.

    CAS  PubMed  Google Scholar 

  • Lambert C, Sockett RE. Laboratory maintenance of Bdellovibrio. Curr Protoc Microbiol. 2008; Chapter 7: Unit 7B 2.

    Google Scholar 

  • Lambert C, Sockett RE. Nucleases in Bdellovibrio bacteriovorus contribute towards efficient self-biofilm formation and eradication of preformed prey biofilms. FEMS Microbiol Lett. 2013;340(2):109–16. https://doi.org/10.1111/1574-6968.12075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert C, Smith MCM, Sockett RE. A novel assay to monitor predator-prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol. 2003;5(2):127–32. https://doi.org/10.1046/j.1462-2920.2003.00385.x.

    Article  CAS  PubMed  Google Scholar 

  • Lambert C, et al. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Mol Microbiol. 2006;60(2):274–86. https://doi.org/10.1111/j.1365-2958.2006.05081.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert C, et al. Mutagenesis of RpoE-like sigma factor genes in Bdellovibrio reveals differential control of groEL and two groES genes. BMC Microbiol. 2012;12(1):99. https://doi.org/10.1186/1471-2180-12-99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin B, Chen SW, Cao Z, Lin YQ, Mo DZ, Zhang HB, et al. Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection: striking similarities and obvious differences with mammals. Mol Immunol. 2007;44:295–301.

    CAS  PubMed  Google Scholar 

  • Loozen G, Boon N, Pauwels M, Slomka V, Herrero ER, Quirynen M, et al. Effect of Bdellovibrio bacteriovorus HD100 on multispecies oral communities. Anaerobe. 2015;35:45–53.

    CAS  PubMed  Google Scholar 

  • Lu F, Cai J. The protective effect of Bdellovibrio-and-like organisms (BALO) on tilapia fish fillets against Salmonella enterica ssp enterica serovar Typhimurium. Lett Appl Microbiol. 2010;51:625–31.

    CAS  PubMed  Google Scholar 

  • Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbuchel A. PHA recovery from biomass. Biomacromolecules. 2013;14:2963–72.

    CAS  PubMed  Google Scholar 

  • Maier RM, Soberón-Chávez G. Pseudomonas aeruginosa rhamnolipids: Biosynthesis and potential applications. Appl Microbiol Biotechnol. 2000;54(5):625–33. https://doi.org/10.1007/s002530000443.

    Article  CAS  PubMed  Google Scholar 

  • Margulis L. Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci USA. 1996;93:1071–6.

    CAS  PubMed  Google Scholar 

  • Martinez V, de la Pena F, Garcia-Hidalgo J, de la Mata I, Garcia JL, Prieto MA. Identification and biochemical evidence of a medium-chain-length Polyhydroxyalkanoate Depolymerase in the Bdellovibrio bacteriovorus predatory hydrolytic arsenal. Appl Environ Microbiol. 2012;78:6017–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez V, Jurkevitch E, Garcia JL, Prieto MA. Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer. Environ Microbiol. 2013;15:1204–15.

    CAS  PubMed  Google Scholar 

  • Martinez V, Herencias C, Jurkevitch E, Prieto MA. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. Sci Rep. 2016;6:24381. https://doi.org/10.21038/srep24381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez V, et al. Engineering a predatory bacterium as a proficient killer agent for intracellular bio- products recovery: The case of the polyhydroxyalkanoates. Nat Publ Group. 2016; https://doi.org/10.1038/srep24381.

  • Medina, A. a, Shanks, R. M. and Kadouri, D. E. Development of a novel system for isolating genes involved in predator-prey interactions using host independent derivatives of Bdellovibrio bacteriovorus 109J. BMC Microbiol. 2008;8:33. https://doi.org/10.1186/1471-2180-8-33.

  • Milner DS, et al. Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio. PLoS Genet. 2014;10(4):e1004253. https://doi.org/10.1371/journal.pgen.1004253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morehouse KA, et al. Three motAB stator gene products in Bdellovibrio bacteriovorus contribute to motility of a single flagellum during predatory and prey-independent growth. J Bacteriol. 2011;193(4):932–43. https://doi.org/10.1128/JB.00941-10.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, et al. Visualizing Bdellovibrio bacteriovorus by using the tdTomato fluorescent protein. Appl Environ Microbiol. 2016;82(6):1653–61. https://doi.org/10.1128/AEM.03611-15.

    Article  CAS  PubMed Central  Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, et al. Effect of aquaculture on world fish supplies. Nature. 2000;405:1017–24.

    CAS  PubMed  Google Scholar 

  • Nikel PI, de Lorenzo V. Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. Metabolic Engineering Elsevier Inc. 2018;50:142–55. https://doi.org/10.1016/j.ymben.2018.05.005.

    Article  CAS  Google Scholar 

  • Nikel PI, et al. From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol. 2016;34:20–9. https://doi.org/10.1016/j.cbpa.2016.05.011.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Marquez JCF, Do Nascimento M, Zehr JP, Curatti L. Genetic engineering of multispecies microbial cell factories as an alternative for bioenergy production. Trends Biotechnol. 2013;31:521–9.

    CAS  PubMed  Google Scholar 

  • Otto S, Harms H, Wick LY. Effects of predation and dispersal on bacterial abundance and contaminant biodegradation. Fems Microbiol Ecol. 2017;93:fiw241. https://doi.org/10.1093/femsec/fiw1241.

    Article  PubMed  Google Scholar 

  • Paoletti A, De Simone E, Ferro V, Orsi C, Campanile E. A new factor in autodepuration of water: Bdellovibrio batteriovorus. Riv Ital Ig. 1967;27:466–80.

    CAS  PubMed  Google Scholar 

  • Perego P, et al. 2,3-Butanediol production by Enterobacter aerogenes: Selection of the optimal conditions and application to food industry residues. Bioprocess Eng. 2000;23(6):613–20. https://doi.org/10.1007/s004490000210.

    Article  CAS  Google Scholar 

  • Philip S, Keshavarz T, Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol. 2007;82:233–47.

    CAS  Google Scholar 

  • Piñeiro SA, Williams HN, Stine OC. Phylogenetic relationships amongst the saltwater members of the genus Bacteriovorax using rpoB sequences and reclassification of Bacteriovorax stolpii as Bacteriolyticum stolpii gen. nov., comb. nov. Int J Syst Evol Micrbiol. 2008;58:1203–9.

    Google Scholar 

  • Prieto A, Escapa IF, Martinez V, Dinjaski N, Herencias C, de la Pena F, et al. A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida. Environ Microbiol. 2016;18:341–57.

    CAS  PubMed  Google Scholar 

  • Rakowski SA, Filutowicz M. Plasmid R6K replication control. Plasmid. 2013;69:231–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, et al. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science. 2004;303:689–92.

    CAS  PubMed  Google Scholar 

  • Rogosky AM, Moak PL, Emmert EAB. Differential predation by Bdellovibrio bacteriovorus 109J. Curr Microbiol. 2006;52:81–5.

    CAS  PubMed  Google Scholar 

  • Roschanski N, Strauch E. Assessment of the Mobilizable Vector Plasmids pSUP202 and pSUP404.2 as Genetic Tools for the Predatory Bacterium Bdellovibrio bacteriovorus. 2010; https://doi.org/10.1007/s00284-010-9748-5.

  • Roschanski N, Strauch E. Assessment of the Mobilizable vector plasmids pSUP202 and pSUP404.2 as genetic tools for the predatory bacterium Bdellovibrio bacteriovorus. Curr Microbiol. 2011;62:589–96.

    CAS  PubMed  Google Scholar 

  • Roschanski N, et al. Identification of genes essential for prey-independent growth of Bdellovibrio bacteriovorus HD100. J Bacteriol. 2011;193(7):1745–56. https://doi.org/10.1128/JB.01343-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotem O, et al. Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues. Proc Natl Acad Sci U S A. 2015;112(44):E6028–37. https://doi.org/10.1073/pnas.1515749112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxon EB, Jackson RW, Bhumbra S, Smith T, Sockett RE. Bdellovibrio bacteriovorus HD100 guards against Pseudomonas tolaasii brown-blotch lesions on the surface of post-harvest Agaricus bisporus supermarket mushrooms. BMC Microbiol. 2014;14:163. https://doi.org/10.1186/1471-2180-1114-1163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaaper RM. Base selection, proofreading, and mismatch repair during DNA-replication in Escherichia-Coli. J Biol Chem. 1993;268:23762–5.

    CAS  PubMed  Google Scholar 

  • Schäfer A, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145(1):69–73. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8045426

    PubMed  Google Scholar 

  • Scherff RH. Control of bacterial blight of soybean by Bdellovibrio-Bacteriovorus. Phytopathology. 1973;63:400–2.

    Google Scholar 

  • Schoeffield AJ, Williams HN, Turng BF, Falkler WA. A comparison of the survival of intraperiplasmic and attack phase bdellovibrios with reduced oxygen. Microbial Ecol. 1996;32:35–46.

    CAS  Google Scholar 

  • Schwudke D, Strauch E, Krueger M, Appel B. Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst Appl Microbiol. 2001;24:385–94.

    CAS  PubMed  Google Scholar 

  • Seidler RJ, Starr MP. Isolation and characterization of host-independent Bdellovibrios. J Bacteriol. 1969;100:769–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon R, Priefer U, Puhler A. A broad host range mobilization system for Invivo genetic-engineering – transposon mutagenesis in gram-negative Bacteria. Bio-Technology. 1983;1:784–91.

    CAS  Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK. Microbial enzymes: industrial progress in 21st century. 3Biotech. 2016;6:174. https://doi.org/10.1007/s13205-13016-10485-13208.

    Article  Google Scholar 

  • Sinumvayo JP. Agriculture and Food Applications of Rhamnolipids and its Production by Pseudomonas Aeruginosa. Journal of Chemical Engineering & Process Technology. 2015;06(02):2–9. https://doi.org/10.4172/2157-7048.1000223.

    Article  CAS  Google Scholar 

  • Sockett RE. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol. 2009;63:523–39.

    CAS  PubMed  Google Scholar 

  • Steyert SR, Pineiro SA. Development of a novel genetic system to create markerless deletion mutants of Bdellovibrio bacteriovorus. Appl Environ Microbiol. 2007;73(15):4717–24. https://doi.org/10.1128/AEM.00640-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steyert SR, Messing SAJ, Amzel LM, Gabelli SB, Pineiro SA. Identification of Bdellovibrio bacteriovorus HD100 Bd0714 as a Nudix dGTPase. J Bacteriol. 2008;190:8215–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stolp H, Starr MP. Bdellovibrio Bacteriovorus gen. Et Sp. N., a predatory, Ectoparasitic, and Bacteriolytic microorganism. Antonie Van Leeuwenhoek. 1963;29:217.

    CAS  PubMed  Google Scholar 

  • Strittmatter W, Weckesser J, Salimath PV, Galanos C. Nontoxic lipopolysaccharide from Rhodopseudomonas-Sphaeroides Atcc-17023. J Bacteriol. 1983;155:153–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000;25:1503–55.

    CAS  Google Scholar 

  • Sudesh K, Bhubalan K, Chuah JA, Kek YK, Kamilah H, Sridewi N, et al. Synthesis of polyhydroxyalkanoate from palm oil and some new applications. Appl Microbiol Biotechnol. 2011;89:1373–86.

    CAS  PubMed  Google Scholar 

  • Theisen M, Liao JC. Industrial Biotechnology: Escherichia coli as a Host. Ind Biotechnol. 2016:149–81. https://doi.org/10.1002/9783527807796.ch5.

  • Tomás-Cortázar J, et al. Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. Microbial Cell Factories BioMed Central. 2018;17(1):1–10. https://doi.org/10.1186/s12934-018-0880-4.

    Article  CAS  Google Scholar 

  • Thomashow MF, Rittenberg SC. Penicillin-induced formation of osmotically stable Spheroplasts in nongrowing Bdellovibrio-Bacteriovorus. J Bacteriol. 1978;133:1484–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tudor JJ, et al. Isolation of predation-deficient mutants of Bdellovibrio bacteriovorus by using transposon mutagenesis. Appl Environ Microbiol. 2008;74(17):5436–43. https://doi.org/10.1128/AEM.00256-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurtzel O, Dori-Bachash M, Pietrokovski S, Jurkevitch E, Sorek R. Mutation detection with next-generation resequencing through a mediator genome. Plos One. 2010;5:e15628. https://doi.org/10.11371/journal.pone.0015628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme, grant agreement no. 760994-2 (ENGICOIN), the Spanish Ministry of Science, Innovation and Universities (BIO2017-83448-R) and the Community of Madrid (P2018/NMT4389). Sergio Salgado is a recipient of a predoctoral FPU grant (FPU17/03978) from the Spanish Ministry of Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Prieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herencias, C., Salgado-Briegas, S., Prieto, M.A. (2020). Emerging Horizons for Industrial Applications of Predatory Bacteria. In: Jurkevitch, E., Mitchell, R. (eds) The Ecology of Predation at the Microscale. Springer, Cham. https://doi.org/10.1007/978-3-030-45599-6_7

Download citation

Publish with us

Policies and ethics