Skip to main content

The Ecology of Bdellovibrio and Like Organisms in Wastewater Treatment Plants

  • Chapter
  • First Online:
The Ecology of Predation at the Microscale

Abstract

The Bdellovibrio and like organisms (BALOs) are obligate predators of gram negative bacteria, for which they have an absolute requirement in order to replicate and complete their life cycle. This peculiar life style profoundly affects their physiology and cellular biology and defines their ecology. BALOs are ubiquitous in soils and in water bodies; while they are not numerically dominant, they can be abundant and diverse. Among the water bodies, BALOs inhabit wastewater treatment plant reactors (WWTP) as well as other schemes where water is recycled. Their capacity to prey upon gram negative bacteria and their semi-generalist feeding suggest that they may play important roles in bacterial biomass turnover and in the reduction of numerous pathogens in these environments. This chapter first introduces the BALO’s life cycle, and features of their ecology and dynamics. It then presents our understanding of BALO community structure and dynamics under varying conditions in WWTPs, detailing latest research studies showing that BALO abundance is greatly influenced by the type of treatment applied to the wastewater. It ends by presenting open questions on our understanding of BALO effects on bacterial communities and by suggesting novels ways to address these questions, considering their capacity to improve wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afinogenova AV, Ratner EN, Lambina VA. Oscillations of parasite and host numbers in two-membered bacterial system. Microbiology (Mikrobiologiya). 1977.

    Google Scholar 

  • Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31:533–8.

    CAS  PubMed  Google Scholar 

  • Avidan O, Petrenko M, Becker R, Beck S, Linscheid M, Pietrokovski S, Jurkevitch E. Identification and characterization of differentially-regulated type IVb pilin genes necessary for predation in obligate bacterial predators. Sci Rep. 2017;7:1013.

    PubMed  PubMed Central  Google Scholar 

  • Bai R, Leow HF. Microfiltration of activated sludge wastewater—the effect of system operation parameters. Sep Purif Technol. 2002;29:189–98.

    CAS  Google Scholar 

  • Barel G, Jurkevitch E. Analysis of phenotypic diversity among host-independent mutants of Bdellovibrio bacteriovorus 109J. Arch Microbiol. 2001;176:211–6.

    CAS  PubMed  Google Scholar 

  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons M-N, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13:310–7.

    CAS  PubMed  Google Scholar 

  • Cao H, He S, Wang H, Hou S, Lu L, Yang X. Bdellovibrios, potential biocontrol bacteria against pathogenic Aeromonas hydrophila. Vet Microbiol. 2012;154:413–8.

    PubMed  Google Scholar 

  • Cao H, An J, Zheng W, He S. Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus. J Invertebr Pathol. 2015;130:13–20.

    PubMed  Google Scholar 

  • Chanyi RM, Ward C, Pechey A, Koval SF. To invade or not to invade: two approaches to a prokaryotic predatory life cycle. Can J Microbiol. 2013;59:273–9.

    CAS  PubMed  Google Scholar 

  • Chanyi RM, Koval SF, Brooke JS. Stenotrophomonas maltophilia biofilm reduction by Bdellovibrio exovorus. Environ Microbiol Rep. 2016;8:343–51.

    CAS  PubMed  Google Scholar 

  • Chauhan A, Williams HN. Response of Bdellovibrio and like organisms (BALOs) to the migration of naturally occurring bacteria to chemoattractants. Curr Microbiol. 2006;53:516–22.

    CAS  PubMed  Google Scholar 

  • Chauhan A, Cherrier J, Williams HN. Impact of sideways and bottom-up control factors on bacterial community succession over a tidal cycle. Proc Natl Acad Sci U S A. 2009;106:4301–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C-Y, Yen S-H, Chung Y-C. Combination of photoreactor and packed bed bioreactor for the removal of ethyl violet from wastewater. Chemosphere. 2014;117:494–501.

    CAS  PubMed  Google Scholar 

  • Cheng C, Zhou Z, Niu T, An Y, Shen X, Pan W, Chen Z, Liu J. Effects of side-stream ratio on sludge reduction and microbial structures of anaerobic side-stream reactor coupled membrane bioreactors. Bioresour Technol. 2017;234:380–8.

    CAS  PubMed  Google Scholar 

  • Cheng C, Zhou Z, Pang H, Zheng Y, Chen L, Jiang L-M, Zhao X. Correlation of microbial community structure with pollutants removal, sludge reduction and sludge characteristics in micro-aerobic side-stream reactor coupled membrane bioreactors under different hydraulic retention times. Bioresour Technol. 2018;260:177–85.

    CAS  PubMed  Google Scholar 

  • Cho G, Kwon J, Soh SM, Jang H, Mitchell RJ. Sensitivity of predatory bacteria to different surfactants and their application to check bacterial predation. Appl Microbiol Biotechnol. 2019;103:8169–78.

    CAS  PubMed  Google Scholar 

  • Cohen Y, Pasternak Z, Johnke J, Abed-Rabbo A, Kushmaro A, Chatzinotas A, Jurkevitch E. Bacteria and microeukaryotes are differentially segregated in sympatric wastewater microhabitats. Environ Microbiol. 2019;21(5):1757–70.

    CAS  PubMed  Google Scholar 

  • Cotter T, Thomashow M. Identification of a Bdellovibrio bacteriovorus genetic locus, hit, associated with the host-independent phenotype. J Bacteriol. 1992;174:6018–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cytryn E, Minz D, Gelfand I, Neori A, Gieseke A, de Beer D, van Rijn J. Sulfide-oxidizing activity and bacterial community structure in a fluidized bed reactor from a zero-discharge Mariculture system. Environ Sci Technol. 2005;39:1802–10.

    CAS  PubMed  Google Scholar 

  • Dashiff A, Junka R, Libera M, Kadouri D. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol. 2011;110:431–44.

    CAS  PubMed  Google Scholar 

  • Dattner I, Miller E, Petrenko M, Kadouri DE, Jurkevitch E, Huppert A. Modelling and parameter inference of predator–prey dynamics in heterogeneous environments using the direct integral approach. J R Soc Interface. 2017;14:20160525.

    PubMed  PubMed Central  Google Scholar 

  • Davidov Y, Jurkevitch E. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax-Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol. 2004;54:1439–52.

    CAS  PubMed  Google Scholar 

  • Davidov Y, Friedjung A, Jurkevitch E. Structure analysis of a soil community of predatory bacteria using culture-dependent and culture-independent methods reveals a hitherto undetected diversity of Bdellovibrio-and-like organisms. Environ Microbiol. 2006a;8:1667–73.

    CAS  PubMed  Google Scholar 

  • Davidov Y, Huchon D, Koval SF, Jurkevitch E. A new α-proteobacterial clade of Bdellovibrio-like predators: implications for the mitochondrial endosymbiotic theory. Environ Microbiol. 2006b;8:2179–88.

    CAS  PubMed  Google Scholar 

  • de Kreuk MK, Heijnen JJ, van Loosdrecht MCM. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol Bioeng. 2005;90:761–9.

    PubMed  Google Scholar 

  • Dharani S, Kim DH, Shanks RMQ, Doi Y, Kadouri DE. Susceptibility of colistin-resistant pathogens to predatory bacteria. Res Microbiol. 2017.

    Google Scholar 

  • Dias FF, Baht JV. Microbial ecology of activated sludge. II. Bacteriophages, Bdellovibrio, coliforms, and other organisms. Appl Microbiol. 1965;13:257–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolinšek J, Lagkouvardos I, Wanek W, Wagner M, Daims H. Interactions of nitrifying Bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp. Appl Environ Microbiol. 2013;79:2027–37.

    PubMed  PubMed Central  Google Scholar 

  • Dori-Bachash M, Dassa B, Pietrokovski S, Jurkevitch E. Proteome-based comparative analyses of growth stages reveal new cell cycle-dependent functions in the predatory bacterium Bdellovibrio bacteriovorus. Appl Environ Microbiol. 2008;74:7152–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan MC, Gillette RK, Maglasang MA, Corn EA, Tai AK, Lazinski DW, Shanks RMQ, Kadouri DE, Camilli A. High-throughput analysis of gene function in the bacterial predator Bdellovibrio bacteriovorus. mBio. 2019;10:e01040–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enos BG, Anthony MK, DeGiorgis JA, Williams LE. Prey range and genome evolution of Halobacteriovorax marinus predatory bacteria from an estuary. mSphere. 2018;3:e00508.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans KJ, Lambert C, Sockett RE. Predation by Bdellovibrio bacteriovorus HD100 requires type IV Pili. J Bacteriol. 2007;189:4850–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton AK, Kanna M, Woods RD, Aizawa SI, Sockett RE. Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J Bacteriol. 2010;192:6329–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Tan CH, Cohen Y, Rice SA. Isolation of Bdellovibrio bacteriovorus from a tropical wastewater treatment plant and predation of mixed species biofilms assembled by the native community members. Environ Microbiol: n/a-n/a. 2016.

    Google Scholar 

  • Feng S, Tan CH, Constancias F, Kohli GS, Cohen Y, Rice SA. Predation by Bdellovibrio bacteriovorus significantly reduces viability and alters the microbial community composition of activated sludge flocs and granules. FEMS Microbiol Ecol. 2017;93:fix020.

    Google Scholar 

  • Fry J, Staples D. The occurrence and role of Bdellovibrio bacteriovorus in a polluted river. Water Res. 1974;8:1029–35.

    Google Scholar 

  • Fry J, Staples D. Distribution of Bdellovibrio bacteriovorus in sewage works, river water, and sediments. Appl Environ Microbiol. 1976;31:469–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gatica J, Tripathi V, Green S, Manaia CM, Berendonk T, Cacace D, Merlin C, Kreuzinger N, Schwartz T, Fatta-Kassinos D, Rizzo L, Schwermer CU, Garelick H, Jurkevitch E, Cytryn E. High throughput analysis of integron gene cassettes in wastewater environments. Environ Sci Technol. 2016;50:11825–36.

    CAS  PubMed  Google Scholar 

  • Gatica J, Jurkevitch E, Cytryn E. Comparative metagenomics and network analyses provide novel insights into the scope and distribution of β-lactamase homologs in the environment. Front Microbiol. 2019;10:146.

    PubMed  PubMed Central  Google Scholar 

  • Gelfand I, Barak Y, Even-Chen Z, Cytryn E, Van Rijn J, Krom MD, Neori A. A novel zero discharge intensive seawater recirculating system for the culture of marine fish. J World Aquacult Soc. 2003;34:344–58.

    Google Scholar 

  • Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7:e1002158.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio. 2014;5:e01918–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn MW, Schmidt J, Koll U, Rohde M, Verbarg S, Pitt A, Nakai R, Naganuma T, Lang E. Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silvanigrellaceae fam. nov. and Silvanigrellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoracaceae and Halobacteriovoraceae in the new order Bacteriovoracales ord. nov., and reclassification of the family Pseudobacteriovoracaceae in the order Oligoflexales. Int J Syst Evol Microbiol. 2017;67:2555–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hobley L, King JR, Sockett RE. Bdellovibrio predation in the presence of decoys: three-way bacterial interactions revealed by mathematical and experimental analyses. Appl Environ Microbiol. 2006;72:6757–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hobley L, Lerner T, Williams L, Lambert C, Till R, Milner D, Basford S, Capeness M, Fenton A, Atterbury R, Harris M, Sockett RE. Genome analysis of a simultaneously predatory and prey-independent, novel Bdellovibrio bacteriovorus from the River Tiber, supports in silico predictions of both ancient and recent lateral gene transfer from diverse bacteria. BMC Genomics. 2012a;13:670.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hobley L, Fung RKY, Lambert C, Harris MATS, Dabhi JM, King SS, Basford SM, Uchida K, Till R, Ahmad R, Aizawa S-I, Gomelsky M, Sockett RE. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathog. 2012b;8:e1002493.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hol FJ, Rotem O, Jurkevitch E, Dekker C, Koster DA. Bacterial predator–prey dynamics in microscale patchy landscapes. Proc R Soc B. 2016;283:20152154.

    PubMed  Google Scholar 

  • Iebba V, Santangelo F, Totino V, Nicoletti M, Gagliardi A, De Biase RV, Cucchiara S, Nencioni L, Conte MP, Schippa S. Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS One. 2013;8:e61608.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Im H, Choi SY, Son S, Mitchell RJ. Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Sci Rep. 2017;7:14415.

    PubMed  PubMed Central  Google Scholar 

  • Im H, Dwidar M, Mitchell RJ. Bdellovibrio bacteriovorus HD100, a predator of gram-negative bacteria, benefits energetically from Staphylococcus aureus biofilms without predation. ISME J. 2018;12:2090–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol. 2017;15:271–84.

    CAS  PubMed  Google Scholar 

  • Johnke J, Boenigk J, Harms H, Chatzinotas A. Killing the killer: predation between protists and predatory bacteria. FEMS Microbiol Lett. 2017a;364:fnx089.

    Google Scholar 

  • Johnke J, Baron M, de Leeuw M, Kushmaro A, Jurkevitch E, Harms H, Chatzinotas A. A generalist protist predator enables coexistence in multitrophic predator-prey systems containing a phage and the bacterial predator Bdellovibrio. Front Ecol Evol. 2017b;5:124.

    Google Scholar 

  • Jurkevitch E. Isolation and classification of Bdellovibrio and like organisms. In: Coico R, Kowalik T, Quarles J, Stevenson B, Taylor R, editors. Current protocols in microbiology. New York: Wiley; 2012.

    Google Scholar 

  • Jurkevitch E, Minz D, Ramati B, Barel G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microbiol. 2000;66:2365–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadouri D, O’Toole GA. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol. 2005;71:4044–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadouri DE, Tran A. Measurement of predation and biofilm formation under different ambient oxygen conditions using a simple gasbag-based system. Appl Environ Microbiol. 2013;79:5264–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadouri D, Venzon NC, O’Toole GA. Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl Environ Microbiol. 2007;73:605–14.

    CAS  PubMed  Google Scholar 

  • Kadouri D, O’Toole GA. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol. 2005;71:4044–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadouri DE, To K, Shanks RMQ, Doi Y. Predatory bacteria: a potential ally against multidrug-resistant gram-negative pathogens. PLoS One. 2013;8:e63397.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandel PP, Pasternak Z, van Rijn J, Nahum O, Jurkevitch E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol Ecol. 2014;89:149–61.

    CAS  PubMed  Google Scholar 

  • Karunker I, Rotem O, Dori-Bachash M, Jurkevitch E, Sorek R. A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus. PLoS One. 2013;8:e61850.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley JI, Williams HN. Bdellovibrios in Callinectus sapidus, the blue crab. Appl Environ Microbiol. 1992;58:1408–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kessel M, Shilo M. Relationship of Bdellovibrio elongation and fission to host cell size. J Bacteriol. 1976;128:477–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi Y, Bomar L, Graf J. Stratified bacterial community in the bladder of the medicinal leech, Hirudo verbana. Environ Microbiol. 2009;11:2758–70.

    PubMed  Google Scholar 

  • Kim E-H, Dwidar M, Mitchell RJ, Kwon Y-N. Assessing the effects of bacterial predation on membrane biofouling. Water Res. 2013;47:6024–32.

    CAS  PubMed  Google Scholar 

  • Kim E-H, Dwidar M, Kwon Y-N, Mitchell RJ. Pretreatment with alum or powdered activated carbon reduces bacterial predation-associated irreversible fouling of membranes. Biofouling. 2014;30:1225–33.

    CAS  PubMed  Google Scholar 

  • Klein DA, Casida LE Jr. Occurrence and enumeration of Bdellovibrio bacteriovorus in soil capable of parasitizing Escherichia coli and indigenous soil bacteria. Can J Microbiol. 1967;13:1235–41.

    CAS  PubMed  Google Scholar 

  • Koval SF, Hynes SH, Flannagan RS, Pasternak Z, Davidov Y, Jurkevitch E. Bdellovibrio exovorus sp. nov., a novel predator of Caulobacter crescentus. Int J Syst Evol Microbiol. 2012.

    Google Scholar 

  • Koval SF, Williams HN, Stine OC. Reclassification of Bacteriovorax marinus as Halobacteriovorax marinus gen. nov., comb. nov. and Bacteriovorax litoralis as Halobacteriovorax litoralis comb. nov.; description of Halobacteriovoraceae fam. nov. in the class Deltaproteobacteria. Int J Syst Evol Microbiol. 2015;65:593–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kümmerer K. Antibiotics in the aquatic environment – a review – part I. Chemosphere. 2009;75:417–34.

    PubMed  Google Scholar 

  • Kümmerer K, Dionysiou DD, Olsson O, Fatta-Kassinos D. A path to clean water. Science. 2018;361:222–4.

    PubMed  Google Scholar 

  • Kuru E, Lambert C, Rittichier J, Till R, Ducret A, Derouaux A, Gray J, Biboy J, Vollmer W, VanNieuwenhze M, Brun YV, Sockett RE. Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation. Nat Microbiol. 2017;2:1648–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • LaMarre AG, Straley SC, Conti SF. Chemotaxis towards amino acids by Bdellovibrio bacteriovorus. J Bacteriol. 1977;131:201–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert C, Sockett R. Nucleases in Bdellovibrio bacteriovorus contribute towards efficient self-biofilm formation and eradication of pre-formed prey biofilms. FEMS Microbiol Lett: n/a-n/a. 2013.

    Google Scholar 

  • Lambert C, Smith M, Sockett R. A novel assay to monitor predator-prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol. 2003;5:127–32.

    CAS  PubMed  Google Scholar 

  • Lambert C, Chang CY, Capeness MJ, Sockett RE. The first bite--profiling the predatosome in the bacterial pathogen Bdellovibrio. PLoS One. 2010;5:e8599.

    PubMed  PubMed Central  Google Scholar 

  • Lambert C, Cadby IT, Till R, Bui NK, Lerner TR, Hughes WS, Lee DJ, Alderwick LJ, Vollmer W, Sockett ER, Lovering AL. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus. Nat Commun. 2015;6:1–10.

    Google Scholar 

  • Lambina VA, Afinogenova AV, Romai Penabad S, Konovalona SM, PushkarevaA.P. Micavibrio admirandus gen. et sp. nov. Mikrobiologiya. 1982;51:114–7.

    CAS  Google Scholar 

  • Lambina VA, Afinogenova AV, Romay Penabad S, Konovalona SM, Andreev LV. A new species of exoparasitic bacteria from the genus Micavibrio destroying gram-negative bacteria. Mikrobiologiya. 1983;53:777–80.

    Google Scholar 

  • Lerner TR, Lovering AL, Bui NK, Uchida K, Aizawa S-I, Vollmer W, Sockett RE. Specialized peptidoglycan hydrolases sculpt the intra-bacterial niche of predatory Bdellovibrio and increase population fitness. PLoS Pathog. 2012;8:e1002524.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Williams H. 454 pyrosequencing reveals diversity of Bdellovibrio and like organisms in fresh and salt water. Antonie Van Leeuwenhoek. 2015;107:305–11.

    PubMed  Google Scholar 

  • Li H, Liu C, Chen L, Zhang X, Cai J. Biological characterization of two marine Bdellovibrio-and-like organisms isolated from Daya bay of Shenzhen, China and their application in the elimination of Vibrio parahaemolyticus in oyster. Int J Food Microbiol. 2011;151:36–43.

    PubMed  Google Scholar 

  • Loozen G, Boon N, Pauwels M, Slomka V, Rodrigues Herrero E, Quirynen M, Teughels W. Effect of Bdellovibrio bacteriovorus HD100 on multispecies oral communities. Anaerobe. 2015;35(Part A):45–53.

    CAS  PubMed  Google Scholar 

  • Mahmoud KK, McNeely, D., Elwood, C., Koval, S.F. (2007) Design and performance of a 16S rRNA-targeted oligonucleotide probe for detection of members of the genus Bdellovibrio by fluorescence in situ hybridization. Appl Environ Microbiol 73: 7488–7493.

    Google Scholar 

  • Mahmoud KK, Koval SF. Characterization of type IV pili in the life cycle of the predator bacterium Bdellovibrio. Microbiology. 2010;156:1040–51.

    CAS  PubMed  Google Scholar 

  • Makowski Ł, Trojanowski D, Till R, Lambert C, Lowry R, Sockett RE, Zakrzewska-Czerwińska J. Dynamics of chromosome replication and its relationship to predatory attack lifestyles in Bdellovibrio bacteriovorus. Appl Environ Microbiol. 2019;85:00730–19.

    Google Scholar 

  • Markelova NY. Effect of toxic pollutants on Bdellovibrio. Process Biochem. 2002;37:1177–81.

    CAS  Google Scholar 

  • Martínez V, de la Peña F, García-Hidalgo J, de la Mata I, García JL, Prieto MA. Identification and biochemical evidence of a medium-chain-length Polyhydroxyalkanoate Depolymerase in the Bdellovibrio bacteriovorus predatory hydrolytic arsenal. Appl Environ Microbiol. 2012;78:6017–26.

    PubMed  PubMed Central  Google Scholar 

  • Martínez V, Jurkevitch E, García JL, Prieto MA. Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer. Environ Microbiol: n/a-n/a. 2013.

    Google Scholar 

  • Matassa S, Verstraete W, Pikaar I, Boon N. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Res. 2016;101:137–46.

    CAS  PubMed  Google Scholar 

  • McCauley EP, Haltli B, Kerr RG. Description of Pseudobacteriovorax antillogorgiicola gen. nov., sp. nov., a bacterium isolated from the gorgonian octocoral Antillogorgia elisabethae, belonging to the family Pseudobacteriovoracaceae fam. nov., within the order Bdellovibrionales. Int J Syst Evol Microbiol. 2015;65:522–30.

    CAS  PubMed  Google Scholar 

  • Medina A, Shanks R, Kadouri D. Development of a novel system for isolating genes involved in predator-prey interactions using host independent derivatives of Bdellovibrio bacteriovorus 109J. BMC Microbiol. 2008;8:33.

    PubMed  PubMed Central  Google Scholar 

  • Milner DS, Till R, Cadby I, Lovering AL, Basford SM, Saxon EB, Liddell S, Williams LE, Sockett RE. Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio. PLoS Genet. 2014;10:e1004253.

    PubMed  PubMed Central  Google Scholar 

  • Monnappa AK, Dwidar M, Mitchell RJ. Application of bacterial predation to mitigate recombinant bacterial populations and their DNA. Soil Biol Biochem. 2013;57:427–35.

    CAS  Google Scholar 

  • Mukherjee S, Brothers KM, Shanks RMQ, Kadouri DE. Visualizing Bdellovibrio bacteriovorus by using the tdTomato fluorescent protein. Appl Environ Microbiol. 2016;82:1653–61.

    CAS  PubMed Central  Google Scholar 

  • Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, Gaze WH. Novel insights into selection for antibiotic resistance in complex microbial communities. mBio. 2018;9:e00969–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Negri M-C, Morosini M-I, Baquero M-R, Campo Rd, Blázquez J, Baquero F. Very low cefotaxime concentrations select for Hypermutable Streptococcus pneumoniae populations. Antimicrob Agents Chemother. 2002;46:528–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oyedara OO, De Luna-Santillana EDJ, Olguin-Rodriguez O, Guo X, Mendoza-Villa MA, Menchaca-Arredondo JL, Elufisan TO, Garza-Hernandez JA, Garcia Leon I, Rodriguez-Perez MA. Isolation of Bdellovibrio sp. from soil samples in Mexico and their potential applications in control of pathogens. Microbiol Open. 2016;5:992–1002.

    CAS  Google Scholar 

  • Paix B, Ezzedine JA, Jacquet S. Diversity, dynamics, and distribution of Bdellovibrio and like organisms in Perialpine Lakes. Appl Environ Microbiol. 2019;85:e02494–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN, Jurkevitch E. By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J. 2013;7:756–69.

    CAS  PubMed  Google Scholar 

  • Pasternak Z, Njagi M, Shani Y, Chanyi R, Rotem O, Lurie-Weinberger MN, Koval S, Pietrokovski S, Gophna U, Jurkevitch E. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J. 2014;8:625–35.

    CAS  PubMed  Google Scholar 

  • Pineiro SA, Sahaniuk GE, Romberg E, Williams H. Predation pattern and phylogenetic analysis of Bdellovibrionaceae from the great salt Lake, Utah. Curr Microbiol. 2004;48:113–7.

    CAS  PubMed  Google Scholar 

  • Pineiro S, Chauhan A, Berhane T-K, Athar R, Zheng G, Wang C, Dickerson T, Liang X, Lymperopoulou D, Chen H, Christman M, Louime C, Babiker W, Stine OC, Williams H. Niche partition of Bacteriovorax operational taxonomic units along salinity and temporal gradients in the Chesapeake Bay reveals distinct estuarine strains. Microb Ecol. 2013;65:652–60.

    CAS  PubMed  Google Scholar 

  • Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science. 2004;303:689–92.

    CAS  PubMed  Google Scholar 

  • Rice TD, Williams HN, Turng BF. Susceptibility of bacteria in estuarine environments to autochthonous bdellovibrios. Microb Ecol. 1998;35:256–64.

    CAS  PubMed  Google Scholar 

  • Richards GP, Fay JP, Dickens KA, Parent MA, Soroka DS, Boyd EF. Predatory bacteria as natural modulators of Vibrio parahaemolyticus and Vibrio vulnificus in seawater and oysters. Appl Environ Microbiol. 2012;78:7455–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu W-T, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7.

    CAS  PubMed  Google Scholar 

  • Rogosky A, Moak P, Emmert E. Differential predation by Bdellovibrio bacteriovorus 109J. Curr Microbiol. 2006;52:81–5.

    CAS  PubMed  Google Scholar 

  • Roschanski N, Klages S, Reinhardt R, Linscheid M, Strauch E. Identification of genes essential for prey-independent growth of Bdellovibrio bacteriovorus HD100. J Bacteriol. 2011;193:1745–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rotem O, Pasternak Z, Jurkevitch E. Bdellovibrio and like organisms. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: deltaproteobacteria and epsilonproteobacteria. Berlin/Heidelberg: Springer; 2014. p. 3–17.

    Google Scholar 

  • Rotem O, Pasternak Z, Shimoni E, Belausov E, Porat Z, Pietrokovski S, Jurkevitch E. Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues. Proc Natl Acad Sci. 2015;112:E6028–37.

    CAS  PubMed  Google Scholar 

  • Rotem O, Nesper J, Borovok I, Gorovits R, Kolot M, Pasternak Z, Shin I, Glatter T, Pietrokovski S, Jenal U, Jurkevitch E. An extended cyclic Di-GMP network in the predatory bacterium Bdellovibrio bacteriovorus. J Bacteriol. 2016;198:127–37.

    CAS  PubMed  Google Scholar 

  • Ruby EG, Rittenberg SC. Differentiation after premature release of intraperiplasmically growing Bdellovibrio bacteriovorus. J Bacteriol. 1983;154:32–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Amat A, Torrella F. Formation of stable bdelloplasts as a starvation-survival strategy of marine bdellovibrios. Appl Environ Microbiol. 1990;56:2127–5.

    Google Scholar 

  • Sathyamoorthy R, Maoz A, Pasternak Z, Im H, Huppert A, Kadouri D, Jurkevitch E. Bacterial predation under changing viscosities. Environ Microbiol. 2019;21:2997–3010.

    CAS  PubMed  Google Scholar 

  • Schoeffield AJ, Williams HN. Efficiencies of recovery of bdellovibrios from brackish-water environments by using various bacterial species as prey. Appl Environ Microbiol. 1990;56:230–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwudke D, Strauch E, Krueger M, Appel B. Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst Appl Microbiol. 2001;24:385–94.

    CAS  PubMed  Google Scholar 

  • Semblante GU, Hai FI, Ngo HH, Guo W, You S-J, Price WE, Nghiem LD. Sludge cycling between aerobic, anoxic and anaerobic regimes to reduce sludge production during wastewater treatment: performance, mechanisms, and implications. Bioresour Technol. 2014;155:395–409.

    CAS  PubMed  Google Scholar 

  • Semblante GU, Phan HV, Hai FI, Xu Z-Q, Price WE, Nghiem LD. The role of microbial diversity and composition in minimizing sludge production in the oxic-settling-anoxic process. Sci Total Environ. 2017;607–608:558–67.

    PubMed  Google Scholar 

  • Shemesh Y, Jurkevitch E. Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ Microbiol. 2004;6:8–12.

    Google Scholar 

  • Shnel N, Barak Y, Ezer T, Dafni Z, van Rijn J. Design and performance of a zero-discharge tilapia recirculating system. Aquac Eng. 2002;26:191–203.

    Google Scholar 

  • Spencer SJ, Tamminen MV, Preheim SP, Guo MT, Briggs AW, Brito IL, Weitz DA, Pitkanen LK, Vigneault F, Virta MP, Alm EJ. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 2016;10:427–36.

    CAS  PubMed  Google Scholar 

  • Staples DG, Fry JC. Factors which influence the enumeration of Bdellovibrio bacteriovorus in sewage and river water. J Appl Bacteriol. 1973;36:1–11.

    Google Scholar 

  • Stolp H, Petzold H. Untersuchungen über einen obligat parasitischen Mikroorganismus mit lytischer Aktivität für Pseudomonas-Bakterien. J Phytopathol. 1962;45:364–90.

    Google Scholar 

  • Sun Y, Ye J, Hou Y, Chen H, Cao J, Zhou T. Predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant clinical pathogens and their corresponding biofilms. Jpn J Infect Dis. 2017;70:485–9.

    CAS  PubMed  Google Scholar 

  • Szabó E, Liébana R, Hermansson M, Modin O, Persson F, Wilén B-M. Comparison of the bacterial community composition in the granular and the suspended phase of sequencing batch reactors. AMB Express. 2017;7:168.

    PubMed  PubMed Central  Google Scholar 

  • Tran NH, Reinhard M, Gin KY-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018;133:182–207.

    CAS  PubMed  Google Scholar 

  • Uematsu T. Ecology of Bdellovibrio parasitic to rice bacterial leaf blight pathogen, Xanthomonas oryzae. Rev Plant Prot Res. 1980;13:12–26.

    Google Scholar 

  • Van Essche M, Sliepen I, Loozen G, Van Eldere J, Quirynen M, Davidov Y, Jurkevitch E, Boon N, Teughels W. Development and performance of a quantitative PCR for the enumeration of Bdellovibrionaceae. Environ Microbiol Rep. 2009;1:228–33.

    PubMed  Google Scholar 

  • Varon M. Selection of predation-resistant bacteria in continuous culture. Nature. 1979;277:386–8.

    Google Scholar 

  • Varon M, Shilo M. Inhibition of the predatory activity of Bdellovibrio by various environmental pollutants. Microb Ecol. 1981;7:107–11.

    CAS  PubMed  Google Scholar 

  • von Wintersdorff CJH, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, Savelkoul PHM, Wolffs PFG. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016;7:173.

    Google Scholar 

  • Wan C, Zhang P, Lee D-J, Yang X, Liu X, Sun S, Pan X. Disintegration of aerobic granules: role of second messenger cyclic di-GMP. Bioresour Technol. 2013;146:330–5.

    CAS  PubMed  Google Scholar 

  • Wang Z, Kadouri D, Wu M. Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13. BMC Genomics. 2011;12:453.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh RM, Zaneveld JR, Rosales SM, Payet JP, Burkepile DE, Thurber RV. Bacterial predation in a marine host-associated microbiome. ISME J. 2015.

    Google Scholar 

  • Wen CQ, Lai XT, Xue M, Huang YL, Li HX, Zhou SN. Molecular typing and identification of Bdellovibrio-and-like organisms isolated from seawater shrimp ponds and adjacent coastal waters. J Appl Microbiol. 2009;106:1154–62.

    CAS  PubMed  Google Scholar 

  • Wendland A, Ozoguz Y. Operation costs of wastewater treatment plants. Ahrensburg: Employee of Hamburg Public Sewage Company; 2005.

    Google Scholar 

  • Whitby GE. Bdellovibrio bacteriovorus 6-5-s and Aquaspirillum serpens VHL in continuous culture; 1977.

    Google Scholar 

  • Wijeyekoon S, Carere CR, West M, Nath S, Gapes D. Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors. Water Res. 2018;140:1–11.

    CAS  PubMed  Google Scholar 

  • Wilkinson MHF. Predation in the presence of decoys: an inhibitory factor on pathogen control by bacteriophages or bdellovibrios in dense and diverse ecosystems. J Theor Biol. 2001;208:27–36.

    CAS  PubMed  Google Scholar 

  • Williams HN. A study of the distribution of bdellovibrios in estuarine sediment over an annual cycle. Microb Ecol. 1988;15:9–20.

    CAS  PubMed  Google Scholar 

  • Yılmaz H, Çelik MA, Şengezer Ç, Özkan M. Use of Bdellovibrio bacteriovirus as biological cleaning method for MBRSystems; 2014.

    Google Scholar 

  • Yu R, Zhang S, Chen Z, Li C. Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement. Front Environ Sci Eng. 2017;11:10.

    Google Scholar 

  • Zheng G, Wang C, Williams HN, Pineiro SA. Development and evaluation of a quantitative real-time PCR assay for the detection of saltwater Bacteriovorax. Environ Microbiol. 2008;10:2515–26.

    CAS  PubMed  Google Scholar 

  • Zheng Y, Cheng C, Zhou Z, Pang H, Chen L, Jiang L-M. Insight into the roles of packing carriers and ultrasonication in anaerobic side-stream reactor coupled membrane bioreactors: sludge reduction performance and mechanism. Water Res. 2019;155:310–9.

    CAS  PubMed  Google Scholar 

  • Zhou Z, Qiao W, Xing C, Shen X, Hu D, Wang L. A micro-aerobic hydrolysis process for sludge in situ reduction: performance and microbial community structure. Bioresour Technol. 2014;173:452–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Eddie Cytryn (Agricultural Research Organization, Bet Dagan, Israel) for reading the manuscript and for his sharp suggestions that truly improved it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edouard Jurkevitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jurkevitch, E. (2020). The Ecology of Bdellovibrio and Like Organisms in Wastewater Treatment Plants. In: Jurkevitch, E., Mitchell, R. (eds) The Ecology of Predation at the Microscale. Springer, Cham. https://doi.org/10.1007/978-3-030-45599-6_2

Download citation

Publish with us

Policies and ethics