Skip to main content

Colliding Bodies Optimization Algorithm for Structural Optimization of Offshore Wind Turbines with Frequency Constraints

  • Chapter
  • First Online:
Metaheuristic Optimization Algorithms in Civil Engineering: New Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 900))

Abstract

Considering the size and dimension of offshore wind turbines, the optimization of such structures is a tedious task. Nonetheless, in this chapter, a meta-heuristic algorithm named Colliding Bodies Optimization (CBO) is employed when investigating the optimal design of jacket supporting structures for offshore wind turbines. The OC4 reference jacket is considered as the case study, validating the outcomes of this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaveh, A., & Sabeti, S. (2018). Structural optimization of jacket supporting structures for offshore wind turbines using colliding bodies optimization algorithm. The Structural Design of Tall and Special Buildings, 27(13), e1494. https://doi.org/10.1002/tal.1494.

    Article  Google Scholar 

  2. Uys, P. E., Farkas, J., Jármai, K., & van Tonder, F. (2007). Optimisation of a steel tower for a wind turbine structure. Engineering Structures, 29(7), 1337–1342. https://doi.org/10.1016/j.engstruct.2006.08.011.

    Article  Google Scholar 

  3. Chen, J., Yang, R., Ma, R., & Li, J. (2016). Design optimization of wind turbine tower with lattice-tubular hybrid structure using particle swarm algorithm. The Structural Design of Tall and Special Buildings, 25(15), 743–758. https://doi.org/10.1002/tal.1281.

    Article  Google Scholar 

  4. Thiry, A., Rigo, P., Buldgen, L., Raboni, G., & Bair, F. (2011). Optimization of monopile offshore wind structures. In W. F. Carlos Guedes Soares (Ed.), Advances in marine structures. London: CRC Press.

    Google Scholar 

  5. Long, H., Moe, G., & Fischer, T. (2011). Lattice towers for bottom-fixed offshore wind turbines in the ultimate limit state: Variation of some geometric parameters. Journal of Offshore Mechanics and Arctic Engineering, 134(2). https://doi.org/10.1115/1.4004634.

  6. Long, H., & Moe, G. (2012). Preliminary design of bottom-fixed lattice offshore wind turbine towers in the fatigue limit state by the frequency domain method. Journal of Offshore Mechanics and Arctic Engineering, 134(3). https://doi.org/10.1115/1.4005200.

  7. Zwick, D., Muskulus, M., & Moe, G. (2012). Iterative optimization approach for the design of full-height lattice towers for offshore wind turbines. Energy Procedia, 24, 297–304. https://doi.org/10.1016/j.egypro.2012.06.112.

    Article  Google Scholar 

  8. Zwick, D., & Muskulus, M. (2016). Simplified fatigue load assessment in offshore wind turbine structural analysis. Wind Energy, 19(2), 265–278. https://doi.org/10.1002/we.1831.

    Article  Google Scholar 

  9. Oest, J., Sørensen, R., T. Overgaard, L. C., & Lund, E. (2017). Structural optimization with fatigue and ultimate limit constraints of jacket structures for large offshore wind turbines. Structural and Multidisciplinary Optimization, 55(3), 779–793. https://doi.org/10.1007/s00158-016-1527-x.

  10. Kaveh, A., & Sabeti, S. (2018). Optimal design of jacket supporting structures for offshore wind turbines using CBO and ECBO algorithms. Periodica Polytechnica Civil Engineering, 62(3), 545–554. https://doi.org/10.3311/PPci.11651.

    Article  Google Scholar 

  11. Kaveh, A., Mahdavi, V. R. (2015). Colliding bodies optimization: Extensions and applications. Berlin: Springer.

    Google Scholar 

  12. DNV, G. (2014) DNV-OS-J101–Design of offshore wind turbine structures. Oslo: DNV GL.

    Google Scholar 

  13. Manwell, J. F., McGowan, J. G. & Rogers, A. L. (2010). Wind turbine design and testing. Wind energy explained (pp. 311–357). Hoboken, NJ: Wiley.

    Google Scholar 

  14. CEN, E. (2010). 3: Design of steel structures-Part 1-1: General rules and rules for buildings. Brussels: CEN.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kaveh .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaveh, A., Dadras Eslamlou, A. (2020). Colliding Bodies Optimization Algorithm for Structural Optimization of Offshore Wind Turbines with Frequency Constraints. In: Metaheuristic Optimization Algorithms in Civil Engineering: New Applications. Studies in Computational Intelligence, vol 900. Springer, Cham. https://doi.org/10.1007/978-3-030-45473-9_10

Download citation

Publish with us

Policies and ethics