Skip to main content

Two-Stage Optimization Strategies for Integrating Electric Vehicles in the Energy Internet

  • Chapter
  • First Online:
Energy Internet
  • 322 Accesses

Abstract

Electric vehicles (EVs) form an important part of the energy internet, as they connect a transportation network with an electricity network. EV uptake largely depends on the optimization strategies of charging infrastructures such as battery swapping stations (BSSs). These stations can potentially reduce the upfront expenses of EV owners, range anxiety, long charging times and electricity grid strain. Currently, the major challenge in BSSs is the creation of robust business strategies. This chapter proposes BSS stochastic optimization strategies that consider EV uptake uncertainties and power distribution company decisions. Two stochastic optimizations involving two stages are investigated: (a) optimization with recourse and (b) bilevel optimization. The recourse optimization recommends initial battery investment even before the station visits are known in the planning stage and recommends battery allocations in the operation stage. This optimization links a transport network to a distribution line network, providing energy arbitrage and curtailment tractability. The bilevel optimization further links the transport network to a transmission line network using aggregated EV batteries as a form of flexible load to compensate for intermittent renewable source generation. The flexible load is a lower-level decision made by distribution company operators, and the same flexible load is a constraint in the upper-level decisions made by BSS owners. Furthermore, this optimization can link the transportation and electricity networks to a gas network in the presence of gas as a power source with varying marginal prices. The proposed strategies provide a pathway for integrating EVs in the energy internet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J.T. Turnure, L. Westfall, International Energy Outlook 2016 With Projections to 2040. USDOE Energy Information Administration (EIA) (Washington, DC, 2016)

    Google Scholar 

  2. W. Su, J. Wang, J. Roh, Stochastic energy scheduling in microgrids with intermittent renewable energy resources. IEEE Trans. Smart Grid 5, 1876–1883 (2014). https://doi.org/10.1109/TSG.2013.2280645

    Article  Google Scholar 

  3. P. Denholm, M. O’Connell, G. Brinkman, J. Jorgenson, Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart (National Renewable Energy Laboratory, Golden CO, 2015)

    Book  Google Scholar 

  4. F.P. Sioshansi, California’s ‘Duck Curve’ arrives well ahead of schedule. Electr. J. 29,71–72 (2016). https://doi.org/10.1016/j.tej.2016.07.010

  5. Australian Energy Market Operator, South Australian Electricity Report Australian Government (2015)

    Google Scholar 

  6. A. Henriot, Economic curtailment of intermittent renewable energy sources. Energy Econ. 49, 370–379 (2015). https://doi.org/10.1016/j.eneco.2015.03.002

    Article  Google Scholar 

  7. A.Y. Saber, G.K. Venayagamoorthy, Plug-in vehicles and renewable energy sources for cost and emission reductions. IEEE Trans. Ind. Electron. 58, 1229–1238 (2011). https://doi.org/10.1109/TIE.2010.2047828

    Article  Google Scholar 

  8. S.S. Raza, I. Janajreh, C. Ghenai, Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source. Appl. Energy 136, 909–920 (2014). https://doi.org/10.1016/j.apenergy.2014.04.080

    Article  Google Scholar 

  9. E.V. Global, Outlook 2016: Beyond One Million Electric Cars (International Energy Agency, Paris, France, 2016)

    Google Scholar 

  10. K. Feeney, D. Brass, D. Kua, A. Yamamoto, E. Tourneboeuf, D. Adams, Impact of Electric Vehicles and Natural Gas Vehicles on the Energy Markets (Australian Energy Market Commission, AECOM, Sydney, Australia, 2012)

    Google Scholar 

  11. D.J. MacKay, Sustainable Energy—without the Hot Air (2009)

    Google Scholar 

  12. W.R. Fuqua, Cost Benefit Analysis of the Federal Tax Credit for Purchasing an Electric Vehicle (ProQuest Dissertations Publishing, 2012)

    Google Scholar 

  13. Q. Dai, T. Cai, S. Duan, F. Zhao, Stochastic modeling and forecasting of load demand for electric bus battery-swap station. IEEE Trans. Power Deliv. 29, 1909–1917 (2014). https://doi.org/10.1109/TPWRD.2014.2308990

    Article  Google Scholar 

  14. S. Networks, White Paper: How the Smart Grid Enables Utilities to Integrate Electric Vehicles (Redwood City, CA, 2013)

    Google Scholar 

  15. S. Mohagheghi, B. Parkhideh, S. Bhattacharya, Inductive power transfer for electric vehicles: potential benefits for the distribution grid, in 2012 IEEE International Electric Vehicle Conference (2012), pp. 1–8. https://doi.org/10.1109/ievc.2012.6183266

  16. I.S. Bayram, G. Michailidis, M. Devetsikiotis, F. Granelli, Electric power allocation in a network of fast charging stations. IEEE J. Sel. Areas Commun. 31, 1235–1246 (2013). https://doi.org/10.1109/JSAC.2013.130707

    Article  Google Scholar 

  17. L.P. Zulkarnain, T. Kinnunen, P. Kess, The electric vehicles ecosystem model: construct analysis and identification of key challenges. Manag. Glob. Transit. 12, 253–277 (2014)

    Google Scholar 

  18. W. Infante, J. Ma, A. Liebman, Operational strategy analysis of electric vehicle battery swapping stations. IET Electr. Syst. Transp. 8, 130–135 (2018). https://doi.org/10.1049/iet-est.2017.0075

    Article  Google Scholar 

  19. T.H. Wu, G.K.H. Pang, K.L. Choy, H.Y. Lam, An optimization model for a battery swapping station in Hong Kong, in 2015 (IEEE, 2015), pp. 1–6. https://doi.org/10.1109/itec.2015.7165769

  20. S. Yang, J. Yao, T. Kang, X. Zhu, Dynamic operation model of the battery swapping station for EV in electricity market. Energy 65, 544–549 (2014). https://doi.org/10.1016/j.energy.2013.11.010

    Article  Google Scholar 

  21. M.R. Sarker, H. Pandzic, M.A. Ortega-Vazquez, Optimal operation and services scheduling for an electric vehicle battery swapping station. IEEE Trans. Power Syst. 30, 901–910 (2015). https://doi.org/10.1109/TPWRS.2014.2331560

    Article  Google Scholar 

  22. L. Xinyi, L. Nian, H. Yangqi, Z. Jianhua, Z. Nan, Optimal configuration of EV battery swapping station considering service availability, in 2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG) (2014), pp. 1–5. https://doi.org/10.1109/igbsg.2014.6835217

  23. J.R. Birge, F. Louveaux, Introduction to Stochastic Programming, vol. Book, Whole (Springer, Berlin, 2011)

    Book  Google Scholar 

  24. A. Georghiou, W. Wiesemann, D. Kuhn, The Decision Rule Approach to Optimisation under Uncertainty: Methodology and Applications in Operations Management (2011)

    Google Scholar 

  25. J.L. Higle, Stochastic programming: optimization when uncertainty matters, in Emerging Theory, Methods, and Applications. Informs (2005), pp. 30–53

    Google Scholar 

  26. J. Linderoth, A. Shapiro, S. Wright, The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142, 215–241 (2006). https://doi.org/10.1007/s10479-006-6169-8

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Sinha, P. Malo, K. Deb, A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. (2017)

    Google Scholar 

  28. G. Eichfelder, Multiobjective Bilevel Optim. Math. Program. 123, 419–449 (2010). https://doi.org/10.1007/s10107-008-0259-0

    Article  Google Scholar 

  29. T. Stoilov, K. Stoilova, V. Stoilova, Bi-level formalization of urban area traffic lights control, in Innovative Approaches and Solutions in Advanced Intelligent Systems, ed by S. Margenov, G. Angelova, G. Agre G (Springer International Publishing, Cham, 2016), pp. 303–318. https://doi.org/10.1007/978-3-319-32207-0_20

  30. S. Alizadeh, P. Marcotte, G. Savard, Two-stage stochastic bilevel programming over a transportation network. Transp. Res. Part B: Methodol. 58, 92–105 (2013)

    Article  Google Scholar 

  31. G. Bouza Allende, G.J. Still, Solving bilevel programs with the KKT approach. Math. Program. 138, 309–332 (2013). https://doi.org/10.1007/s10107-012-0535-x

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Dempe, F.M. Kue, Solving discrete linear bilevel optimization problems using the optimal value reformulation. J. Global Optim. 68, 255 (2016). https://doi.org/10.1007/s10898-016-0478-5

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Dempe, A.B. Zemkoho, On the Karush–Kuhn–Tucker reformulation of the bilevel optimization problem nonlinear analysis: theory. Methods Appl. 75, 1202–1218 (2012). https://doi.org/10.1016/j.na.2011.05.097

    Article  MATH  Google Scholar 

  34. Australian Energy Market Operator, NSW Electricity Price and Demand Australian Government: Australian Energy Market Operator NSW Electricity Price and Demand (2017)

    Google Scholar 

  35. W. Infante, J. Ma, A. Liebman, Optimal recourse strategy for battery swapping stations considering electric vehicle uncertainty. IEEE Trans. Intell. Transp. Syst. 21, 1369–1379 (2020). https://doi.org/10.1109/TITS.2019.2905898

  36. New South Wales Roads and Maritime Service, Traffic Volume Viewer in Area 19065 Road Traffic Volume 2016. (2017). http://www.rms.nsw.gov.au/about/corporate-publications/statistics/traffic-volumes/aadt-map/index.html#/?z=6

  37. California ISO, California ISO Renewable Watch. California ISO. http://www.caiso.com/informed/Pages/CleanGrid/TodaysRenewables.aspx. Accessed 11 Sept. 2017

  38. IEEE, IEEE Std 2030.1.1–2015: IEEE Standard Technical Specifications of a DC Quick Charger for Use with Electric Vehicles (2016)

    Google Scholar 

  39. M. Shin, H. Kim, H. Jang, Building an interoperability test system for electric vehicle chargers based on ISO/IEC 15118 and IEC 61850 standards. Appl. Sci. 6, 165 (2016). https://doi.org/10.3390/app6060165

  40. M. Yilmaz, P.T. Krein, Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 28, 2151–2169 (2013). https://doi.org/10.1109/TPEL.2012.2212917

    Article  Google Scholar 

  41. ClipperCreek Inc. Determining Charging Times (2015). https://www.clippercreek.com/charging-times-chart/

  42. X. Jiang, J. Wang, Y. Han, Q. Zhao, Coordination dispatch of electric vehicles charging/discharging and renewable energy resources power in microgrid. Procedia Comput. Sci. 107, 157–163 (2017). https://doi.org/10.1016/j.procs.2017.03.072

    Article  Google Scholar 

  43. M.H. Zar, J.S. Borrero, B. Zeng, O.A. Prokopyev, A note on linearized reformulations for a class of bilevel linear integer problems. Ann. Oper. Res. 1–19 (2017). https://doi.org/10.1007/s10479-017-2694-x

  44. H.V.D.C. Manitoba, Research Centre. IEEE 14 Bus System (2014)

    Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the University of Sydney FEIT Mid-Career Research Development Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Infante, W., Ma, J., Han, X., Li, W., Zomaya, A.Y. (2020). Two-Stage Optimization Strategies for Integrating Electric Vehicles in the Energy Internet. In: Zobaa, A., Cao, J. (eds) Energy Internet. Springer, Cham. https://doi.org/10.1007/978-3-030-45453-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45453-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45452-4

  • Online ISBN: 978-3-030-45453-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics