Skip to main content

Multiple Source-Load-Storage Cooperative Optimization of Energy Management for Energy Local Area Network Systems

  • Chapter
  • First Online:
Energy Internet

Abstract

This chapter proposes an effective model and algorithm for energy management within an energy local area network (ELAN), considering the cooperative optimization of resources, loads and battery energy storage systems (BESSs). First, the operation conditions of various resources and their interactions for the management of the ELAN are introduced. Second, an energy management model is proposed that aims to maximize the utilization of renewable energies and minimize the overall system cost. Additionally, the optimal scheduling strategies are provided for cases of productive capacity and shortage. Finally, three different optimization schemes considering the demand response effect and direct interaction effect are proposed in which the Lagrangian multiplier method and an evolutionary large-scale global optimization algorithm (self-adaptive neighbourhood search differential evolution) are used to find the optimal solution. Experimental results indicate that the developed model and algorithm are efficient and also present the realization of the goal of “intranet autonomy, network synergy and global optimization.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Janko, M.R. Arnold, N.G. Johnson, Implications of high-penetration renewables for ratepayers and utilities in the residential solar photovoltaic (PV) market. Appl. Energy 180, 37–51 (2016)

    Article  Google Scholar 

  2. I. DAdamo, P. Rosa, Current state of renewable energies performances in the European Union: a new reference framework. Energy Convers. Manag. 121, 84–92 (2016)

    Google Scholar 

  3. S.R. Tito, T.T. Lie, T.N. Anderson, Optimal sizing of a wind photovoltaic battery hybrid renewable energy system considering socio-demographic factors. Sol. Energy 136, 525–532 (2016)

    Article  Google Scholar 

  4. J. Ping, Z. Xiaoxin, S. Yunting, M.A. Shiying, L. Baiqing, Review and prospect of regional renewable energy planning models. Power Syst. Technol. 37(8), 2071–2079 (2013)

    Google Scholar 

  5. Z. Xueting, L. Tianqi, L. Qian, W. Fujun, G. Tieying, Short-term complementary optimal dispatch model of multi-source hybrid power system based on virtual power configuration strategy. Power Syst. Technol. 40(5), 1379–1386 (2016)

    Google Scholar 

  6. L. Guojing, H. Xueshan, Y. Ming, Synergetic economic dispatch in power system operation. Proc. CSEE 34(16), 2668–2675 (2014)

    Google Scholar 

  7. J. Xiaoming,C. Haoyong,X. Peizheng,Z. Xiaodong,Y. Liu, Model and strategy of source-load coordinated dispatch considering intermittent renewable energy. Southern Power Syst. Technol. 9(5), 2–14 (2015)

    Google Scholar 

  8. S. Behboodi, D.P. Chassin, C. Crawford, N. Djilali, Renewable resources portfolio optimization in the presence of demandResponse. Appl. Energy 162, 139–148 (2016)

    Article  Google Scholar 

  9. Y. Qinzheng, Research on Energy Optimization Management for Grid-Connected Micro-Grid (North China Electric Power University, 2015)

    Google Scholar 

  10. P. Tianjiao, C. Naishi, W. Xiaohui et al., Application and architecture of multi-source coordinated optimal dispatch for active distribution network. Autom. Electric Power Syst. 40(1), 17–32 (2016)

    Google Scholar 

  11. W.Chun, W. Ke, Z. Xiangwen, S. Haishun, Z. Cong, X. Xiaohui, Unit commitment considering coordinated dispatch of large scale electric vehicles and wind power generation. Power Syst. Protect. Control 43(11), 41–48 (2015)

    Google Scholar 

  12. H. Tianxiong, X. Jiawei, Z. Xian, Z. Xiaoquan, Evolutionary programming method and its application in the locating and sizing of the distributed generator. J. Electric Power 28(5), 370–373 (2013)

    Google Scholar 

  13. T. Zhang, Z. Fuxing, Z. Yan, Study on energy management system of energy internet. Power Syst. Technol. 40(1), 146–155 (2016)

    Google Scholar 

  14. Z. Ming, Y. Yongqi, L. Dunnan et al., Generation-grid-load-storage coordinative optimal operation mode of energy internet and key technologies. Power Syst. Technol. 40(1), 114–124 (2016)

    Google Scholar 

  15. S. Hongbin, G. Qinglai, P. Zhaoguang, Energy internet concept architecture and frontier outlook. Autom. Electric Power Syst. 39(19), 1–8 (2015)

    Google Scholar 

  16. X. Fang, Q. Yang, J. Wang, W. Yan, Coordinated dispatch in multiple cooperative autonomous islanded microgrids. Appl. Energy 162, 40–48 (2016)

    Article  Google Scholar 

  17. Z. Wang, B. Chen, J. Wang, J. Kim, Decentralized energy management system fornetworked microgrids in grid-connectedand islanded modes. IEEE Trans. Smart Grid 7(2), 1097–1105 (2016)

    Article  Google Scholar 

  18. W. Jiekang, X. Yan, Establishment and solution of the complementary power generation model of wind-energy, hydro-energy and natural gas. Power Syst. Technol. 38(3), 603–609 (2014)

    Google Scholar 

  19. W. Fanrong, S. Quan, L. Xiangning et al., Energy control scheduling optimization strategy for coal-wind-hydrogen energy grid under consideration of the efficiency features of hydrogen production equipment. Proc. CSEE (2017). https://doi.org/10.13334/j.0258-8013.pcsee.170044

    Article  Google Scholar 

  20. S. Yu, Y. Wei, F. Jiakun, W. Jinyu, Liquid hydrogen With SMES and its application in energy internet. Power Syst. Technol. 40(1), 172–179 (2016)

    Google Scholar 

  21. T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, R.J. Hyndman, Probabilistic energy forecasting: global energy forecastingcompetition 2014 and beyond. Int. J. Forecast. 32, 896–913 (2016)

    Article  Google Scholar 

  22. E.A. Farsani, H.A. Abyaneh, M. Abedi, S.H. Hosseinian, A novel policy for LMP calculation in distribution networks based on loss and emission reduction allocation using nucleolus theory. IEEE Trans. Power Syst. 31(1), 143–152 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, T. et al. (2020). Multiple Source-Load-Storage Cooperative Optimization of Energy Management for Energy Local Area Network Systems. In: Zobaa, A., Cao, J. (eds) Energy Internet. Springer, Cham. https://doi.org/10.1007/978-3-030-45453-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45453-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45452-4

  • Online ISBN: 978-3-030-45453-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics