Skip to main content

A Hypothetical Approach: Hydrothermal Systems in the Early Continental Crust

  • Chapter
  • First Online:
The First Cell

Abstract

The development of life can be divided into six phases. Organic molecules can be formed vertically over long distances in the continental crust. Rock minerals’ dissolving releases phosphate, metals, boron, and other substances. A process of collection caused by rising supercritical gases leads to a strong accumulation in cavities (micro-autoclaves) and in the transition zone to the subcritical gas at approx. 1000 m. This is the place where vesicles and peptides are formed. The conditions are optimal for the energy required and the increase in entropy. The requirements for the formation of the first cell are discussed in a hypothetical model. According to the model, following the formation of the first unspecific synthetases and tRNAs, a selection of proteins began to form out of only two amino acids. Simultaneous storage of the information in an RNA enabled the development of specific synthetases with which the principle of life started.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 44.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simoneit BRT (2004) Prebiotic organic synthesis under hydrothermal conditions: an overview. Adv Space Res 33:88–94

    Article  CAS  Google Scholar 

  2. Moosmann B (2017) Molekulare evolution: redoxbiochemie des genetischen Codes. BIOspektrum 23(17):748–751. https://doi.org/10.1007/s12268-017-0864-7

    Article  CAS  Google Scholar 

  3. Süssmuth RD, Mainz A (2017) Nonribosomal peptide synthesis—principles and prospects. Angew Chem 56(14). https://doi.org/10.1002/anie.201609079

  4. Danger G, Plasson R, Pascal R (2012) Pathways for the formation and evolution of peptides in prebiotic environments. Chem Soc Rev 41:5416–5429

    Article  CAS  PubMed  Google Scholar 

  5. Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of aminoacyl-tRNA synthetases into two classes based on mutually exclusive sets of conserved motifs. Nature 347:203–206

    Article  CAS  PubMed  Google Scholar 

  6. Delarue M (2007) An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. RNA 13(2):161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beinert H, Holm RH, Munck E (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659

    Article  CAS  PubMed  Google Scholar 

  8. Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460:831–838

    Article  CAS  PubMed  Google Scholar 

  9. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley-Interscience, New York

    Google Scholar 

  10. Szostak JW (2012) The eightfold path to non-enzymatic RNA replication. J Syst Chem 3(2). https://doi.org/10.1186/1759-2208-3-2

  11. Järvinen P, Oivanen M, Lönnberg H (1991) Interconversion and phosphoester hydrolysis of 2′,5′- and 3′,5′-dinucleoside monophosphates: kinetics and mechanisms. J Org Chem 56:5396–5401

    Article  Google Scholar 

  12. Fischer NM, Polêto MD, Steuer J, van der Spoel D (2018) Influence of Na+ and Mg2+ ions on RNA structures studied with molecular dynamics simulations. Nucleic Acids Res 46(10):4872–4882. https://doi.org/10.1093/nar/gky221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furukawa Y, Horiuchi M, Kakegawa T (2013) Selective stabilization of ribose by borate. Orig Life Evol Biosph 43(4–5):353–361. https://doi.org/10.1007/s11084-013-9350-5

    Article  CAS  PubMed  Google Scholar 

  14. Wienken CJ, Baaske P, Duhr S, Braun D (2011) Thermophoretic melting curves quantify the conformation and stability of RNA and DNA. Nucleic Acids Res:1–10. https://doi.org/10.1093/nar/gkr035

  15. Mayer C, Schreiber U, Dávila MJ, Schmitz OJ, Bronja A, Meyer M, Klein J, Meckelmann SW (2018) Molecular evolution in a peptide-vesicle system. Life 8(2):16. https://doi.org/10.3390/life8020016

    Article  CAS  PubMed Central  Google Scholar 

  16. Yoshida M, Muneyuki E, Hisabori T (2001) Atp synthase – a marvelous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677

    Article  CAS  PubMed  Google Scholar 

  17. Trifonov EN (2009) The origin of the genetic code and of the earliest oligopeptides. Res Microbiol 160:481–486

    Article  CAS  PubMed  Google Scholar 

  18. Carter CW (2015) What RNA world? Why a peptide/RNA partnership merits renewed experimental attention. Life 5:294–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carter CW (2016) An alternative to the RNA world? Nat Hist 125:28–33

    PubMed  PubMed Central  Google Scholar 

  20. Weiss MC, Sousa FL et al (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116. https://doi.org/10.1038/NMICROBIOL.2016.116

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schreiber, U.C., Mayer, C. (2020). A Hypothetical Approach: Hydrothermal Systems in the Early Continental Crust. In: The First Cell. Springer, Cham. https://doi.org/10.1007/978-3-030-45381-7_8

Download citation

Publish with us

Policies and ethics