Advertisement

The First Cell pp 115-160 | Cite as

A Hypothetical Approach: Hydrothermal Systems in the Early Continental Crust

  • Ulrich C. Schreiber
  • Christian Mayer
Chapter
  • 100 Downloads

Abstract

The development of life can be divided into six phases. Organic molecules can be formed vertically over long distances in the continental crust. Rock minerals’ dissolving releases phosphate, metals, boron, and other substances. A process of collection caused by rising supercritical gases leads to a strong accumulation in cavities (micro-autoclaves) and in the transition zone to the subcritical gas at approx. 1000 m. This is the place where vesicles and peptides are formed. The conditions are optimal for the energy required and the increase in entropy. The requirements for the formation of the first cell are discussed in a hypothetical model. According to the model, following the formation of the first unspecific synthetases and tRNAs, a selection of proteins began to form out of only two amino acids. Simultaneous storage of the information in an RNA enabled the development of specific synthetases with which the principle of life started.

References

  1. 1.
    Simoneit BRT (2004) Prebiotic organic synthesis under hydrothermal conditions: an overview. Adv Space Res 33:88–94CrossRefGoogle Scholar
  2. 2.
    Moosmann B (2017) Molekulare evolution: redoxbiochemie des genetischen Codes. BIOspektrum 23(17):748–751.  https://doi.org/10.1007/s12268-017-0864-7CrossRefGoogle Scholar
  3. 3.
    Süssmuth RD, Mainz A (2017) Nonribosomal peptide synthesis—principles and prospects. Angew Chem 56(14).  https://doi.org/10.1002/anie.201609079
  4. 4.
    Danger G, Plasson R, Pascal R (2012) Pathways for the formation and evolution of peptides in prebiotic environments. Chem Soc Rev 41:5416–5429CrossRefGoogle Scholar
  5. 5.
    Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of aminoacyl-tRNA synthetases into two classes based on mutually exclusive sets of conserved motifs. Nature 347:203–206CrossRefGoogle Scholar
  6. 6.
    Delarue M (2007) An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. RNA 13(2):161–169CrossRefGoogle Scholar
  7. 7.
    Beinert H, Holm RH, Munck E (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659CrossRefGoogle Scholar
  8. 8.
    Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460:831–838CrossRefGoogle Scholar
  9. 9.
    Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley-Interscience, New YorkGoogle Scholar
  10. 10.
    Szostak JW (2012) The eightfold path to non-enzymatic RNA replication. J Syst Chem 3(2).  https://doi.org/10.1186/1759-2208-3-2
  11. 11.
    Järvinen P, Oivanen M, Lönnberg H (1991) Interconversion and phosphoester hydrolysis of 2′,5′- and 3′,5′-dinucleoside monophosphates: kinetics and mechanisms. J Org Chem 56:5396–5401CrossRefGoogle Scholar
  12. 12.
    Fischer NM, Polêto MD, Steuer J, van der Spoel D (2018) Influence of Na+ and Mg2+ ions on RNA structures studied with molecular dynamics simulations. Nucleic Acids Res 46(10):4872–4882.  https://doi.org/10.1093/nar/gky221CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Furukawa Y, Horiuchi M, Kakegawa T (2013) Selective stabilization of ribose by borate. Orig Life Evol Biosph 43(4–5):353–361.  https://doi.org/10.1007/s11084-013-9350-5CrossRefPubMedGoogle Scholar
  14. 14.
    Wienken CJ, Baaske P, Duhr S, Braun D (2011) Thermophoretic melting curves quantify the conformation and stability of RNA and DNA. Nucleic Acids Res:1–10.  https://doi.org/10.1093/nar/gkr035
  15. 15.
    Mayer C, Schreiber U, Dávila MJ, Schmitz OJ, Bronja A, Meyer M, Klein J, Meckelmann SW (2018) Molecular evolution in a peptide-vesicle system. Life 8(2):16.  https://doi.org/10.3390/life8020016CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yoshida M, Muneyuki E, Hisabori T (2001) Atp synthase – a marvelous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677CrossRefGoogle Scholar
  17. 17.
    Trifonov EN (2009) The origin of the genetic code and of the earliest oligopeptides. Res Microbiol 160:481–486CrossRefGoogle Scholar
  18. 18.
    Carter CW (2015) What RNA world? Why a peptide/RNA partnership merits renewed experimental attention. Life 5:294–320CrossRefGoogle Scholar
  19. 19.
    Carter CW (2016) An alternative to the RNA world? Nat Hist 125:28–33PubMedPubMedCentralGoogle Scholar
  20. 20.
    Weiss MC, Sousa FL et al (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116.  https://doi.org/10.1038/NMICROBIOL.2016.116CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ulrich C. Schreiber
    • 1
  • Christian Mayer
    • 2
  1. 1.Faculty for BiologyUniversity of Duisburg-EssenEssenGermany
  2. 2.Faculty for ChemistryUniversity of Duisburg-EssenEssenGermany

Personalised recommendations