The New Model: Hydrothermal Systems in the Early Continental Crust

  • Ulrich C. Schreiber
  • Christian Mayer


Fracture zones in the young continental crust form ideal conditions for the emergence of life. In addition to the availability of all the raw materials, and a large variability in pressure, temperature, and pH values, CO2 gas (gCO2) occurs in a supercritical phase state. A nonpolar solvent becomes available as a result, in which reactions take place that cannot occur in water. Australia’s hydrothermal quartz, which is billions of years old, proves that extensive organic chemistry exists from the earth’s early phase in such fault zones. Cyclic pressure fluctuations simulated in the laboratory lead to periodic phase transitions of hydrothermal fluids and the formation of vesicles. At the same time, peptides are being formed which interact with the vesicle membranes and promote structural and chemical evolution.


  1. 1.
    Schreiber U, Locker-Grütjen O, Mayer C (2012) Hypothesis: origin of life in deep-reaching tectonic faults. Prebiotic Chem Orig Life Evol Biosph 42(1):47–54CrossRefGoogle Scholar
  2. 2.
    Meschede M, Warr LN (2019) The geology of Germany. Regional geology reviews. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Fujioka K, Futamura Y, Shiohara T, Hoshino A, Kanaya F, Manome Y, Yamamoto K (2009) Amino acid synthesis in a supercritical carbon dioxide-water mixture. Int J Mol Sci 10:2722–2732CrossRefGoogle Scholar
  4. 4.
    Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Ga ago. Nature 409:175–178CrossRefGoogle Scholar
  5. 5.
    Schreiber U, Mayer C, Schmitz OJ, Rosendahl P, Bronja A, Greule M, Keppler F, Mulder I, Sattler T, Schöler HF (2017) Organic compounds in fluid inclusions of Archean quartz – analogues of prebiotic chemistry on early Earth. PLoS One 12(6):e0177570. Scholar
  6. 6.
    Mayer C, Schreiber U, Dávila MJ (2015) Periodic vesicle formation in tectonic fault zones – an ideal environment for molecular evolution. Orig Life Evol Biosph 45(1–2):139–148CrossRefGoogle Scholar
  7. 7.
    Mayer C, Schreiber U, Dávila MJ (2017) Selection of prebiotic molecules in amphiphilic environments. Life 7:3. Scholar
  8. 8.
    Mayer C, Schreiber U, Dávila MJ, Schmitz OJ, Bronja A, Meyer M, Klein J, Meckelmann SW (2018) Molecular evolution in a peptide-vesicle system. Life 8:16. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ulrich C. Schreiber
    • 1
  • Christian Mayer
    • 2
  1. 1.Faculty for BiologyUniversity of Duisburg-EssenEssenGermany
  2. 2.Faculty for ChemistryUniversity of Duisburg-EssenEssenGermany

Personalised recommendations