Skip to main content

Applications of NIMRAD in Electrochemistry

  • Chapter
  • First Online:
Book cover New Digital Signal Processing Methods

Abstract

This chapter shows how to combine the methods outlined in the previous chapters for application to electrochemistry. The first adopted method, which can be considered as original, is based on the ideas of Yu. Babenko, who generalised the Pythagorean theorem for a wide class of geometrical figures with high symmetry. By applying this method is possible to find some discrete geometrical invariants (DGI) in random sequences to identify deterministic and quantitative parameters inside the measured data, which can represent a universal platform for comparing random sequences, one with each other. An example illustrates the procedure for the treatment of electrochemical measurements, which can be generalised for the quantitative reading of other random functions. Another approach derives from the combination of the modified Fourier transform and the generalised principal component analysis (GPCA), which enables, in some cases, a more detailed data analysis. The third method is associated with the generalisation of the quasi-periodic processes on fractal objects. If one considers the self-similar/fractal processes, then it is possible to create the fractal theory of percolation, which can find confirmation from the analysis on real data. The reader will find this theory rather efficient for application to other fractal objects where is possible to observe similar percolation phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Scholz (ed.), Electroanalytical Methods, Guide to Experiments and Applications (Springer-Verlag, Berlin Heidelberg, 2002)

    Google Scholar 

  2. R.G. Compton, C.E. Banks, Understanding voltammetry (Imperial College Press, 2nd ed, London, 2011)

    Google Scholar 

  3. D.L. Massart, B.G. Vandeginste, L.M.C. Buydens, S. De Jong, P.J. Lewi, J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics: Part A (Elsevier, Amsterdam, 1997)

    Google Scholar 

  4. B.G. Vandeginste, D.L. Massart, L.M.C. Buydens, S. De Jong, P.J. Lewi, J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics: Part B (Elsevier, Amsterdam, 1998)

    Google Scholar 

  5. G. Henze, Polarographie und Voltammetrie (Springer, Berlin, Heidelberg, 2001)

    Book  Google Scholar 

  6. S. Holmin, C. Krantz-Rülcker, I. Lundström, F. Winquist, Meas. Sci. Technol. 12(8), 1348–1354 (2001)

    Article  Google Scholar 

  7. R.R. Nigmatullin, H.C. Budnikov, A.V. Sidelnikov, Electroanalysis 27(6), 1416–1426 (2015)

    Article  Google Scholar 

  8. R.R. Nigmatullin, H.C. Budnikov, A.V. Sidelnikov, Y.A. Yarkaeva, New J. Chem. 41(7), 2561–2573 (2017)

    Article  Google Scholar 

  9. R.R. Nigmatullin, H.K. Budnikov, A.V. Sidelnikov, E.I. Maksyutova, Comput. Commun. Collaborat. 5(3), 12–32 (2017)

    Google Scholar 

  10. N.V. Chesnokov, B.N. Kuznetsov, N.M. Mikova, J. Siberian Federal Univ. Chem. 6(1), 11–22 (2013)

    Google Scholar 

  11. Y.I. Babenko, Power Relations in a Circumference and a Sphere (Norell Press Inc., USA, 1997)

    Google Scholar 

  12. Y.I. Babenko, The power law invariants od the point sets, Professional, S-Petersburg, ISBN 978-5-91259-095-5, see www.naukaspb.ru (Russian Feeration), 2014

  13. R.R. Nigmatullin, C. Ceglie, G. Maione, D. Striccoli, Nonlin. Dynam. 80(4), 1869–1882 (2015)

    Article  Google Scholar 

  14. R.R. Nigmatullin, R.A. Giniatullin, A.I. Skorinkin, Computat. Neurosci. 8, 120 (2014). https://doi.org/10.3389/fncom.2014.00120

    Article  Google Scholar 

  15. H.C. Budnikov, V.I. Shirokova, J. Analyt. Chem. 68(8), 663–670 (2013)

    Article  Google Scholar 

  16. B.B. Damaskin, O.A. Petrii, V.V. Batrakov, Adsorption of Organic Compounds on Electrodes (Plenum Press, New York, 1971)

    Book  Google Scholar 

  17. B.B. Damaskin, The Principles of Current Methods for the Study of Electrochemical Reactions (McGraw-Hill, New York, 1967)

    Google Scholar 

  18. F. Winquist, Voltammetric electronic tongues – basic principles and applications. Microchim. Acta 163(1–2), 3–10 (2008)

    Article  Google Scholar 

  19. K. Woertz, C. Tissen, P. Kleinebudde, J. Breitkreutz, Taste sensing systems (electronic tongues) for pharmaceutical applications. Int. J. Pharm. 417(1–2), 256–271 (2011)

    Article  Google Scholar 

  20. A. Kutyła-Olesiuk, U.E. Wawrzyniak, M. Jańczyk, W. Wróblewski, Electrochemical sensor arrays for the analysis of wine production. Proc. Eng. 87, 580–583 (2014)

    Article  Google Scholar 

  21. H. Xiao, J. Wang, Electronic tongue technique potential in monitoring quality of bottled water. J. Food Agric. Environ. 10, 227–230 (2012)

    Google Scholar 

  22. R.H. Labrador, J. Olsson, F. Winquist, R. Martínez-Máñez, J. Soto, Determination of bisulfites in wines with an electronic tongue based on pulse voltammetry. Electroanalysis 21(3–5), 612–617 (2009)

    Article  Google Scholar 

  23. Х. Cetó, C. Apetrei, M. del Valle, M.L. Rodríguez-Méndez, Evaluation of red wines antioxidant capacity by means of a voltammetric e-tongue with an optimized sensor array. Electrochim. Acta 120, 180–186 (2014)

    Article  Google Scholar 

  24. E.L. Izake, Chiral discrimination and enantioselective analysis of drugs: an overview. J. Pharm. Sci. 96(7), 1659–1676 (2007)

    Article  Google Scholar 

  25. A.L. Lehninger, D.L. Nelson, M.M. Cox, Principles of Biochemistry (Worth Publishers, New York, 1993)

    Google Scholar 

  26. W. Feng, C. Liu, S. Lu, C. Zhang, X. Zhu, Y. Liang, J. Nan, Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and grapheme. Microchimica Acta 181(5–6), 501–509 (2014)

    Article  Google Scholar 

  27. L. Yu, Q. Liu, X. Wu, X. Jiang, J. Yu, X. Chen, Chiral electrochemical recognition of tryptophan enantiomers at a multi-walled carbon nanotube–chitosan composite modified glassy carbon electrode. RSC Adv. 119(5), 98020–98025 (2015)

    Article  Google Scholar 

  28. A.V. Sidel’nikov, V.N. Maistrenko, R.A. Zil’berg, Y.A. Yarkaeva, E.M. Khamitov, An enantioselective voltammetric sensor for the recognition of propranolol stereoisomers. J. Analyt. Chem. 75(5), 575–581 (2017)

    Article  Google Scholar 

  29. Q. Chen, J. Zhou, Q. Han, Y. Wang, Y. Fu, A new chiral electrochemical sensor for the enantioselective recognition of penicillamine enantiomers. J. Solid State Electrochem. 16(7), 2481–2485 (2012)

    Article  Google Scholar 

  30. M. Trojanowicz, Enantioselective electrochemical sensors and biosensors: a mini-review. Electrochem. Commun. 38, 47–52 (2014)

    Article  Google Scholar 

  31. H.Y. Aboul-Enein, R.-I. Stefan, Enantioselective sensors and biosensors in the analysis of chiral drugs. Crit. Rev. Anal. Chem. 28(3), 259–266 (1998)

    Article  Google Scholar 

  32. S. Arnaboldi, T. Benincori, R. Cirilli, W. Kutner, M. Magni, P.R. Mussini, K. Noworyta, F. Sannicolo, Inherently chiral electrodes: the tool for chiral voltammetry. Chem. Sci. 6, 1706–1711 (2015)

    Article  Google Scholar 

  33. T. Yutthalekha, C. Warakulwit, J. Limtrakul, A. Kuhn, Enantioselective recognition of DOPA by mesoporous platinum imprinted with Mandelic acid. Electroanalysis 27(9), 2209–2213 (2015)

    Article  Google Scholar 

  34. T. Yutthalekha, C. Wattanakit, V. Lapeyre, S. Nokbin, C. Warakulwit, J. Limtrakul, A. Kuhn, Asymmetric synthesis using chiral-encoded metal. Nat. Commun. 7(12678), 1–8 (2016)

    Google Scholar 

  35. P. Qu, J. Lei, R. Ouyang, H. Ju, Enantioseparation and Amperometric detection of chiral compounds by in situ molecular imprinting on the Microchannel Wall. Anal. Chem. 81(23), 9651–9656 (2009)

    Article  Google Scholar 

  36. C. Wattanakit, Y.B.S. Côme, V. Lapeyre, P.A. Bopp, M. Heim, S. Yadnum, S. Nokbin, C. Warakulwit, J. Limtrakul, A. Kuhn, Enantioselective recognition at mesoporous chiral metal surfaces. Nat. Commun. 5(3325), 1–8 (2014)

    Google Scholar 

  37. P. Shahgaldian, U. Pieles, Cyclodextrin derivatives as chiral supramolecular receptors for enantioselective sensing. Sensors 6(6), 593–615 (2006)

    Article  Google Scholar 

  38. G. Zhu, Y. Yi, J. Chen, Recent advances for cyclodextrin-based materials in electrochemical sensing. Trend. Anal. Chem. 80, 232–241 (2016)

    Article  Google Scholar 

  39. Y. Kong, W. Zhao, S. Yao, J. Xu, W. Wang, Z. Chen, Molecularly imprinted polypyrrole prepared by electrodeposition for the selective recognition of tryptophan enantiomers. J. Appl. Polym. Sci. 115(4), 1952–1957 (2010)

    Article  Google Scholar 

  40. W.J. Cheong, F. Ali, J.H. Choi, J.O. Lee, K.Y. Sung, Recent applications of molecular imprinted polymers for enantioselective recognition. Talanta 106, 45–59 (2013)

    Article  Google Scholar 

  41. M.P. Tiwari, A. Prasad, Molecularly imprinted polymer based enantioselective sensing devices: a review. Anal. Chim. Acta 853, 1–18 (2015)

    Article  Google Scholar 

  42. L. Feng, B. Xu, J. Ren, C. Zhao, X. Qu, A human telomeric DNA-based chiral biosensor. Chem. Commun. 48(72), 9068–9070 (2012)

    Article  Google Scholar 

  43. Y. Fu, Q. Chen, J. Zhou, Q. Han, Y. Wang, Enantioselective recognition of mandelic acid based on c-globulin modified glassy carbon electrode. Anal. Biochem. 421, 103–107 (2012)

    Article  Google Scholar 

  44. Y. Wang, Q. Han, Q. Zhang, Y. Huang, L. Guo, Y. Fu, Enantioselective recognition of penicillamine enantiomers on bovine serum albumin-modified glassy carbon electrode. J. Solid State Electrochem. 17(3), 627–633 (2013)

    Article  Google Scholar 

  45. R.-I. Stefan-van Staden, S.-C. Balasoiu, G. Bazylak, J.F. van Staden, H.Y. Aboul-Enein, G.L. Radu, Inulins as electroactive materials for enantioanalysis of chiral drugs. J. Electrochem. Soc. 160(10), B192–B195 (2013)

    Article  Google Scholar 

  46. A.B.F. Vitoreti, O. Abrahao, R. da Silva Gomes, G.R. Salazar-Banda, R.T.S. Oliveira, Electroanalytical determination of captopril in pharmaceutical formulations using boron-doped diamond electrodes. Int. J. Electrochem. Sci. 9, 1044–1054 (2014)

    Google Scholar 

  47. C.G. Nan, Z.Z. Feng, W.X. Li, D.J. Ping, C.H. Qin, Electrochemical behavior of tryptophan and its derivatives at a glassy carbon electrode modified with hemin. Anal. Chim. Acta 452(2), 245–254 (2002)

    Article  Google Scholar 

  48. K.J. Vetter, Gleich-und Wechselstromwiderstand der Diffusionspolarisation bei örtlich variabler Austauschstromdichte an der Elektrode. Z. Phys. Chem. 199, 300 (1952)

    Article  Google Scholar 

  49. J. R. Macdonald (ed.), Impedance Spectroscopy – Emphasizing Solid Materials and Systems (Wiley-Interscience, New York, 1987)

    Google Scholar 

  50. M. Sluyters-Rehbach, J.H. Sluyters, Comprehensive treatise of electrochemistry. Plenum Press 9, 177 (1984)

    Google Scholar 

  51. W.P. Gomes, D. Vanmaekelbergh, Impedance spectroscopy at semiconductor electrodes: Review and recent developments. Electrochim. Acta 41(7–8), 967–973 (1996)

    Article  Google Scholar 

  52. A.V. Sidelnikov, D.M. Bikmeev, D.I. Dubrovskii, F.K. Kudasheva, V.N. Maistrenko, Determination of anionic surfactants using methods of impedance spectroscopy and Chemometrics. J. Anal. Chem. 70(7), 837–842 (2015)

    Article  Google Scholar 

  53. V. Y. Gus’kov, A. V. Sidel’nikov, D. A. Suhareva, Y. Y. Gainullina, F. H. Kudasheva, V. N. Maistrenko, Separation of the menthol enantiomers on the sorbent based on supramolecular network structure. Sorbtsionnyye i khromatograficheskiye protsessy, 16(6): 797–802. http://www.sorpchrom.vsu.ru/articles/20160604.pdf, 2016

  54. S.F. Timashev, Y.S. Polyakov, Review of flicker noise spectroscopy in electrochemistry. Fluct. Noise Lett. 07(02), 1–59 (2007)

    Article  Google Scholar 

  55. H.A.A. Al-Mazeedi, R.A. Cottis, A practical evaluation of electrochemical noise parameters as indicators of corrosion type. Electrochim. Acta 49, 2787–2793 (2004)

    Article  Google Scholar 

  56. R.A. Cottis, Interpretation of electrochemical noise data. Corrosion 57(3), 265–285 (2001)

    Article  Google Scholar 

  57. J.R. Kearns, J.R. Scully, P.R. Roberge, D.L. Reichert, J.L. Dawson, Electrochemical Noise Measurement for Corrosion Applications. In Proceedings of the First International Symposium on Electrochemical Noise Measurement for Corrosion Applications, Montreal, Quebec, 1994

    Google Scholar 

  58. A. Hassibi, R. Navid, R.W. Dutton, T.H. Lee, Comprehensive study of noise processes in electrode electrolyte interfaces. J. Appl. Phys. 96, 1074–1082 (2004)

    Article  Google Scholar 

  59. A.V. Sidel’nikov, R.A. Zil’berg, Y.A. Yarkaeva, V.N. Maistrenko, V.A. Kraikin, Voltammetric identification of antiarrhythmic medicines using principal component analysis. J. Anal. Chem. 70(10), 1261–1266 (2015)

    Article  Google Scholar 

  60. D.M. Bikmeev, A.V. Sidel’nikov, F.K. Kudasheva, V.N. Maistrenko, Development of chemometric methods for signal processing in voltammetric systems of the electronic tongue type. J. Anal. Chem. 70(6), 718–724 (2015)

    Article  Google Scholar 

  61. R.R. Nigmatullin, S.I. Osokin, V.A. Toboev, NAFASS: discrete spectroscopy of random signals. Chaos Solitons Fractals 44, 226–240 (2011)

    Article  MathSciNet  Google Scholar 

  62. R.R. Nigmatullin, W. Zhang, NAFASS in action: how to control randomness? Commun. Nonlinear Sci. Numer. Simul. 18, 547–558 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. F. Marken, A. Neudeck, A.M. Bond, Electrode geometry, size, and convection effects, in Electroanalytical Methods, Guide to Experiments and Applications, ed. by F. Scholz, (Springer, Berlin, Heidelberg, 2002), pp. 68–71

    Google Scholar 

  64. S.V. Romanenko, A.G. Stromberg, E.V. Selivanova, E.S. Romanenko, Resolution of the overlapping peaks in the case of linear sweep anodic stripping voltammetry via curve fitting. Chemom. Intell. Lab. Syst. 73, 7–13 (2004)

    Article  Google Scholar 

  65. R. Parsons, Electrical double layer: recent experimental and theoretical developments. Chem. Rev. 90(5), 813–826 (1990)

    Article  Google Scholar 

  66. C.M.A. Brett, A.M.O. Brett, Electrochemistry: Principles, Methods, and Applications (Oxford University Press, Oxford, 1993)

    MATH  Google Scholar 

  67. A.J. Bard, R.F. Faulkner, Electrochemical Methods – Fundamentals and Applications, 2nd edn. (Wiley, Inc., 2000)

    Google Scholar 

  68. Z. Stojek, Recent Development, in Electroanalytical Methods, Guide to Experiments and Applications, ed. by F. Scholz, (Springer, Berlin, Heidelberg, 2002), p. 8

    Google Scholar 

  69. T.P. Moffat, Scanning tunneling microscopy studies of metal electrodes, in Electroanalytical chemistry, ed. by A. J. Bard, I. Rubinstein, (Marcel Dekker, Inc.., 21, pp. 211–316, 1999)

    Google Scholar 

  70. A.J. Bard, F.-R.F. Fan, M.V. Mirkin, Scanning electrochemical microscopy, in Electroanalytical chemistry, ed. by A. J. Bard, I. Rubinstein, (Marcel Dekker, Inc., 18, pp. 243–373, New York, 1994)

    Google Scholar 

  71. T. Pajkossy, L. Nyikos, Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes. Electrochim. Acta 30(11), 1533–1540 (1985)

    Article  Google Scholar 

  72. T. Pajkossy, L. Nyikos, Diffusion to fractal surfaces-III. Linear sweep and cyclic voltammograms. Electrochim. Acta 34(2), 181–186 (1989)

    Article  Google Scholar 

  73. T. Pajkossy, L. Nyikos, Electrochemistry at fractal interfaces: the coupling of ac and dc behaviour at irregular electrodes. Electrochim. Acta 35(10), 1567–1572 (1990)

    Article  Google Scholar 

  74. T. Pajkossy, Electrochemistry at fractal surfaces. J. Electroanal. Chem. 300, 1–11 (1991)

    Article  Google Scholar 

  75. A. Imre, T. Pajkossy, L. Nyikos, Electrochemical determination of the fractal dimension of fractured surfaces. Acta Metal. Mater. 40(8), 1819–1826 (1992)

    Article  Google Scholar 

  76. R.R. Nigmatullin, A. Le Mehaute, Is there a geometrical/physical meaning of the fractional integral with complex exponent? J. Non-Cryst. Solids 351, 2888–2899 (2005)

    Article  Google Scholar 

  77. R.R. Nigmatullin, J. Tenreiro Machado, R. Menezes, Self-similarity principle: The reduced description of randomness. Centr. Eur. J.Phys. 11(6), 724–739 (2013)

    Google Scholar 

  78. R.R. Nigmatullin, D. Baleanu, New relationships connecting a class of fractal objects and fractional integrals in space. Fract. Calc. Appl. Anal. 16(4), 1–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  79. R.R. Nigmatullin, Y.K. Evdokimov, The concept of fractal experiments: new possibilities in quantitative description of quasi-reproducible measurements. Chaos Solitons Fract. 91, 319–328 (2016)

    Article  Google Scholar 

  80. R.R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Stat. Sol (b) 133, 425–430 (1986)

    Article  Google Scholar 

  81. R.R. Nigmatullin, G. Maione, P. Lino, F. Saponaro, W. Zhang, The general theory of the quasi-reproducible experiments: How to describe the measured data of complex systems? Commun. Nonlinear Sci. Numer. Simul. 42, 324–341 (2017)

    Article  Google Scholar 

  82. R.R. Nigmatullin, W. Zhang, R. Yang, Y. Lu, “Universal” fitting function for quantitative description of quasi-reproducible measurements. Comput. Commun. Collaborat., 5(2), DOIC: 2292-1036-2017-02-002-83, 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

8.A Appendix

In this Appendix, it is justified the selection of the scaling parameter ξ in the general fitting formula (8.57). Suppose that instead of the scaling factor ξn it is given the product ξ1ξ2…ξn generated by the random structure of the percolation cluster. It is also supposed that these random scaling factors have small deviations with respect to the mean value ξi = 〈ξ〉 + δi, |δi| <  < 〈ξ〉. By substituting these factors into the product gives

$$ {\displaystyle \begin{array}{l}\prod \limits_{i=1}^n{\upxi}_i=\exp \left[\left(\sum \limits_{i=1}^n\ln \left(\left\langle \upxi \right\rangle +{\updelta}_i\right)\right)\right]={\left\langle \upxi \right\rangle}^n\exp \left[\left(\sum \limits_{i=1}^n\ln \left(1+\frac{\updelta_i}{\left\langle \upxi \right\rangle}\right)\right)\right]\\ {}\cong {\left\langle \upxi \right\rangle}^n\exp {\left(\frac{\left\langle \updelta \right\rangle }{\left\langle \upxi \right\rangle }-\frac{1}{2}\frac{\left\langle {\updelta}^2\right\rangle }{{\left\langle \upxi \right\rangle}^2}+\dots \right)}^n,\kern0.36em \left\langle {\updelta}^s\right\rangle =\frac{1}{n}\sum \limits_{i=1}^n{\left({\updelta}_i\right)}^s.\end{array}} $$
(8.A1)

This useful relationship shows that it is possible to replace the set of the random scaling parameters by one averaged parameter under the relationship

$$ \upxi \to \sqrt[n]{\left(\prod \limits_{i=1}^n{\upxi}_i\right)}=\left\langle \upxi \right\rangle \exp \left(\frac{\left\langle \updelta \right\rangle }{\left\langle \upxi \right\rangle }-\frac{1}{2}\frac{\left\langle {\updelta}^2\right\rangle }{{\left\langle \upxi \right\rangle}^2}+\frac{1}{3}\frac{\left\langle {\updelta}^3\right\rangle }{{\left\langle \upxi \right\rangle}^3}+\dots \right). $$
(8.A2)

Therefore, this parameter is intended in the averaged sense and evaluated on real data with the help of the fitting procedure.

8.B Questions for Self-Testing

  1. 1.

    What is the DGI? Why is it useful for the comparison of two random curves?

  2. 2.

    Reproduce all functional results that are given in Sect. 8.1. In particular, test expressions (8.11), (8.17) and (8.18) as the most important.

  3. 3.

    There is another invariant of the fourth order that can be used for comparison of two random sequences. It admits the separation of variables as well. It has the following form:

$$ {L}_k={A}_{31}{\left(x-{x}_k\right)}^3\cdot \left(y-{y}_k\right)+{A}_{13}\left(x-{x}_k\right)\cdot {\left(y-{y}_k\right)}^3-2{A}_{22}{\left(x-{x}_k\right)}^2\cdot {\left(y-{y}_k\right)}^2 $$

Prove that it has the same form as before (see expressions (8.17) and (8.20)) however, the statistical parameters are different:

$$ {\displaystyle \begin{array}{l}{\upsigma}_x=\frac{2\left[3{\left(\left\langle \Delta x\cdot {\left(\Delta y\right)}^2\right\rangle \right)}^2-\left\langle {\left(\Delta x\right)}^2\Delta y\right\rangle \cdot \left\langle {\left(\Delta y\right)}^3\right\rangle \right]}{\left\langle {\left(\Delta x\right)}^3\right\rangle \left\langle {\left(\Delta y\right)}^3\right\rangle -9\left\langle {\left(\Delta x\right)}^2\Delta y\right\rangle \cdot \left\langle \Delta x\cdot {\left(\Delta y\right)}^2\right\rangle },\\ {}{\upsigma}_y=\frac{2\left[3{\left(\left\langle {\left(\Delta x\right)}^2\cdot \Delta y\right\rangle \right)}^2-\left\langle \Delta x\cdot {\left(\Delta y\right)}^2\right\rangle \cdot \left\langle {\left(\Delta x\right)}^3\right\rangle \right]}{\left\langle {\left(\Delta x\right)}^3\right\rangle \left\langle {\left(\Delta y\right)}^3\right\rangle -9\left\langle {\left(\Delta x\right)}^2\Delta y\right\rangle \cdot \left\langle \Delta x\cdot {\left(\Delta y\right)}^2\right\rangle },\\ {}I={\upsigma}_x\left\langle {\left(\Delta x\right)}^3\Delta y\right\rangle +{\upsigma}_Y\left\langle \Delta x\cdot {\left(\Delta y\right)}^3\right\rangle +\left\langle {\left(\Delta x\right)}^2\cdot {\left(\Delta y\right)}^2\right\rangle .\end{array}} $$

These parameters modify also the quadratic and the fourth forms

$$ {\displaystyle \begin{array}{l}K\left(X,Y\right)={K}_4\left(X,Y\right)+{K}_2\left(X,Y\right)=I\\ {}{K}_4\left(X,Y\right)={\upsigma}_X{X}^3Y+{\upsigma}_Y{XY}^3-2{X}^2{Y}^2\\ {}{K}_2\left(X,Y\right)=\left(3{\upsigma}_X\left\langle \Delta x\Delta y\right\rangle -2\left\langle {\left(\Delta y\right)}^2\right\rangle \right){X}^2+\\ {}+\left(3{\upsigma}_Y\left\langle \Delta x\Delta y\right\rangle -2\left\langle {\left(\Delta x\right)}^2\right\rangle \right){Y}^2+\\ {}+\left(3{\upsigma}_X\left\langle {\left(\Delta x\right)}^2\right\rangle +3{\upsigma}_Y\left\langle {\left(\Delta y\right)}^2\right\rangle -8\left\langle \Delta x\Delta y\right\rangle \right) XY.\end{array}} $$
  1. 4.

    In what cases the GPCA is applicable? Try to formulate the limits of applicability of this approach.

  2. 5.

    What are the limits of applicability of the percolation model, outlined in Sect. 8.3?

  3. 6.

    For a better understanding of the proposed approaches, try to derive the key formulas figuring in Sects.8.2 and 8.3.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nigmatullin, R.R., Lino, P., Maione, G. (2020). Applications of NIMRAD in Electrochemistry. In: New Digital Signal Processing Methods. Springer, Cham. https://doi.org/10.1007/978-3-030-45359-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45359-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45358-9

  • Online ISBN: 978-3-030-45359-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics