Skip to main content

Tissue-Engineered Skin Substitutes

  • Chapter
  • First Online:
Technology in Practical Dermatology
  • 789 Accesses

Abstract

Tissue-engineered skin substitutes have proven to be effective in acute and chronic wound management and cell transplantation may be performed by punch minigrafting, split-thickness skin grafting, hair follicle transplantation, suction blisters, epidermal curettage techniques, cultured and non-cultured autologous keratinocytes. The previous surgical and cultured techniques can be time-consuming and in some cases esthetically unsatisfying or painful for the patients. Recently new non-cultured autologous epidermal and dermal products have been developed with similar results to the cultured dermoepidermal techniques, but are simpler, less expensive, and less time-consuming.

The use of tissue-engineered advanced therapies may improve the quality of life, have cost benefits and accelerate healing of complex wounds. Follow-up studies and randomized clinical trials with a standard measure are needed to confirm the efficacy of those therapies but the current results have proved to be very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Catalano E, Cochis A, Varoni E, Rimondini L, Azzimonti B. Tissue-engineered skin substitutes: an overview. J Artif Organs. 2013;16(4):397–403.

    CAS  PubMed  Google Scholar 

  2. MacNeil S. Biomaterials for tissue engineering of skin. Mater Today. 2008;11(5):26–35.

    CAS  Google Scholar 

  3. Gómez C, Torrero V, Ferreiro I, Pérez D, Palao R, Martínez E, Llames S, Meana A, Holguín P. Use of an autologous bioengineered composite skin in extensive burns: clinical and functional outcomes. A multicentric study. Burns. 2011;37(4):580–9.

    PubMed  Google Scholar 

  4. Debels H, Hamdi M, Abberton K, Morrison W. Dermal matrices and bioengineered skin substitutes: a critical review of current options. Plast Reconstr Surg Glob Open. 2015;3(1):e284.

    PubMed  PubMed Central  Google Scholar 

  5. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    CAS  Google Scholar 

  6. Damanhuri M, Boyle J, Enoch S. Advances in tissue-engineered skin substitutes. Wounds Int. 2011;2(1):27–34.

    Google Scholar 

  7. Wang H, Pieper J, Peters F, van Blitterswijk CA, Lamme EN. Synthetic scaffold morphology controls human dermal connective tissue formation. J Biomed Mater Res A. 2005;74(4):523–32.

    PubMed  Google Scholar 

  8. Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis VA, Singh SR. Advances in skin regeneration using tissue engineering. Int J Mol Sci. 2017;18(4):789.

    PubMed Central  Google Scholar 

  9. Nicholas MN, Jeschke MG, Amini-Nik S. Methodologies in creating skin substitutes. Cell Mol Life Sci. 2016;73(18):3453–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sheikholeslam M, Wright ME, Jeschke MG, Amini-Nik S. Biomaterials for skin substitutes. Adv Healthcare Mater. 2017; https://doi.org/10.1021/acsami.6b12325.

  11. Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, Alizadeh Ghodsi M, Davaran S, Montaseri A. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cells Nanomed Biotechnol. 2017:1–15.

    Google Scholar 

  12. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91.

    CAS  PubMed  Google Scholar 

  13. Biedermann T, Boettcher-Haberzeth S, Reichmann E. Tissue engineering of skin for wound coverage. Eur J Pediatr Surg. 2013;23(5):375–82.

    PubMed  Google Scholar 

  14. Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14(5):289.

    CAS  Google Scholar 

  15. Dixit S, Baganizi DR, Sahu R, Dosunmu E, Chaudhari A, Vig K, Pillai SR, Singh SR, Dennis VA. Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. J Biol Eng. 2017;11:49.

    PubMed  PubMed Central  Google Scholar 

  16. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in wound healing: a comprehensive review. Adv Wound Care. 2014;3(7):445–64.

    Google Scholar 

  17. Hachiya A, Sriwiriyanont P, Kaiho E, Kitahara T, Takema Y, Tsuboi R. An in vivo mouse model of human skin substitute containing spontaneously sorted melanocytes demonstrates physiological changes after UVB irradiation. J Gen Intern Med. 2005;20(5):364–72.

    Google Scholar 

  18. Bielefeld KA, Amini-Nik S, Alman BA. Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci. 2013;70(12):2059–208.

    CAS  Google Scholar 

  19. Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:e23.

    PubMed  PubMed Central  Google Scholar 

  20. Larouche D, Cantin-Warren L, Desgagné M, Guignard R, Martel I, Ayoub A, Lavoie A, Gauvin R, Auger FA, Moulin VJ. Improved methods to produce tissue-engineered skin substitutes suitable for the permanent closure of full-thickness skin injuries. BioResearch Open Access. 2016;5(1):320–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7(43):229–58.

    CAS  PubMed  Google Scholar 

  22. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering—in vivo and in vitro applications. Adv Drug Deliv Rev. 2011;63(4–5):352–66.

    CAS  PubMed  Google Scholar 

  23. Varkey M, Ding J, Tredget EE. Advances in skin substitutes-potential of tissue engineered skin for facilitating anti-fibrotic healing. J Funct Biomater. 2015;6(3):547–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2009; https://doi.org/10.1098/rsif.2009.0403.

  25. Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface. 2007;4(14):413–37.

    CAS  PubMed  Google Scholar 

  26. Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol. 2005;23(4):403–12.

    PubMed  Google Scholar 

  27. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering—in vivo and in vitro applications. Adv Drug Deliv Rev. 2011;63(4–5):352–66.

    CAS  PubMed  Google Scholar 

  28. Wood FM, Stoner ML, Fowler BV, Fear MW. The use of a non-cultured autologous cell suspension and Integra® dermal regeneration template to repair fullthickness skin wounds in a porcine model: a one-step process. Burns. 2007;33(6):693–700.

    PubMed  Google Scholar 

  29. Nicholas MN, Yeung J. Current status and future of skin substitutes for chronic wound healing. J Cutan Med Surg. 2017;21(1):23–30.

    PubMed  Google Scholar 

  30. Lepow BD, Downey M, Yurgelon J, Klassen L, Armstrong DG. Bioengineered tissues in wound healing: a progress report. Expert Rev Dermatol. 2011;6(3):255–62.

    Google Scholar 

  31. Shakespeare PG. The role of skin substitutes in the treatment of burn injuries. Clin Dermatol. 2005;23(4):413–8.

    PubMed  Google Scholar 

  32. Branski LK, Herndon DN, Pereira C, Mlcak RP, Celis MM, Lee JO, Sanford AP, Norbury WB, Zhang X-J, Jeschke MG. Longitudinal assessment of Integra in primary burn management: a randomized pediatric clinical trial. Crit Care Med. 2007;35(11):2615–23.

    PubMed  Google Scholar 

  33. Boyce ST, Goretsky MJ, Greenhalgh DG, Kagan RJ, Rieman MT, Warden GD. Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann Surg. 1995;222(6):743.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G. Bioengineered skin substitutes for the management of burns: a systematic review. Burns. 2007;33(8):946–57.

    PubMed  Google Scholar 

  35. Böttcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns. 2010;36(4):450–60.

    PubMed  Google Scholar 

  36. O’Connor N, Mulliken J, Banks-Schlegel S, Kehinde O, Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet. 1981;317(8211):75–8.

    Google Scholar 

  37. Carsin H, Ainaud P, Le Bever H, Rives J-M, Lakhel A, Stephanazzi J, Lambert F, Perrot J. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns. 2000;26(4):379–87.

    CAS  PubMed  Google Scholar 

  38. Catalano E, Cochis A, Varoni E, Rimondini L, Azzimonti B. Tissue-engineered skin substitutes: an overview. J Artif Organs. 2013;16(4):397–403.

    CAS  PubMed  Google Scholar 

  39. Halim AS, Khoo TL, Mohd Yussof SJ. Biologic and synthetic skin substitutes: an overview. Indian J Plast Surg. 2010;43(Suppl):S23–8.

    PubMed  PubMed Central  Google Scholar 

  40. Kumar MR, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb A. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104(12):6017–84.

    PubMed  Google Scholar 

  41. Nyame TT, Chiang HA, Orgill DP. Clinical applications of skin substitutes. Surg Clin. 2014;94(4):839–50.

    Google Scholar 

  42. Mahboob Morshed N, Chowdhury S, Ruszymah B. The current available biomaterials being used for skin tissue engineering. Regen Res. 2014;3:17–22.

    Google Scholar 

  43. Uccioli L. A clinical investigation on the characteristics and outcomes of treating chronic lower extremity wounds using the tissuetech autograft system. Int J Low Extrem Wounds. 2003;2(3):140–15.

    CAS  PubMed  Google Scholar 

  44. MacNeil S. Progress and opportunities for tissueengineered skin. Nature. 2007;445(7130):874.

    CAS  PubMed  Google Scholar 

  45. Schonfeld WH, Villa KF, Fastenau JM, Mazonson PD, Falanga V. (2000) An economic assessment of Apligraf (Graftskin) for the treatment of hard-to-heal venous leg ulcers. Wound Repair Regen 8:251–257. 45.

    Google Scholar 

  46. Redekop WK, McDonnell J, Verboom P, Lovas K, Kalo Z. The cost effectiveness of Apligraf treatment of diabetic foot ulcers. Pharmaco Economics. 2003;21:1171–83.

    Google Scholar 

  47. Shahrokhi S, Arno A, Jeschke MG. The use of dermal substitutes in burn surgery: acute phase. Wound Repair Regen. 2014;22(1):14–22.

    PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agata, J., Marco, R. (2020). Tissue-Engineered Skin Substitutes. In: Fimiani, M., Rubegni, P., Cinotti, E. (eds) Technology in Practical Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-030-45351-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45351-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45350-3

  • Online ISBN: 978-3-030-45351-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics