Skip to main content

Laser Light and Light–tissue Interaction

  • Chapter
  • First Online:
Technology in Practical Dermatology
  • 792 Accesses

Abstract

After a brief introduction on the principles of operation of a laser, the operating regimes for the lasers of interest to dermatologist are first considered. Laser–tissue interaction and laser-selective photothermolysis are then discussed. Applications of selective photothermolysis to the treatment of vascular disorders and for tattoo removal are lastly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Nd:YAG laser can also operate cw and, accordingly, one can also have a cw-operating KTP laser. This regime, however, is not used in dermatology (although it is used in other specialties of medicine such as, e.g., urology).

  2. 2.

    Absorption coefficient of a fully oxygenated blood vessel, at 1064 nm wavelength, can be estimated from Fig. 10 of ref [8] to be μa ≅ 5 cm−1. This means that, for a 2 mm diameter vein, approximately 63% of the radiation incident on the vein will be absorbed by the blood.

References

  1. Einstein A. On the quantum theory of radiation. Z. Phys. 1917;18:121–3.

    CAS  Google Scholar 

  2. Svelto O. Principles of Lasers. Fifth ed. New York: Springer; 2010.

    Book  Google Scholar 

  3. Siegman AE. Lasers. Mill Valley CA: University Science Books; 1986.

    Google Scholar 

  4. Omi T, Numano K. The role of the CO2 laser and fractional CO2 laser in dermatology. Laser Therapy: J Laser Surg Phototherapy Photobioactivation. 2014;23(1): 49–60. 10.5978/islsm.14-RE-01; Online ISSN: 1884-7269, Print ISSN: 0898-5901.

    Google Scholar 

  5. For a review see: Lister T, Wright PA, Chappell PH. Optical properties of human skin, in light-tissue interaction using computational methods. Lasers Med. Sci. 2017;32:1909–1918.

    Google Scholar 

  6. Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. 1981;77:13–9.

    Article  CAS  PubMed  Google Scholar 

  7. Jacques S. Optical properties of biological tissues: a Review. Phys Med Biol. 2013;58:37–61.

    Article  Google Scholar 

  8. Habbema L, Verhagen R, Van Hal R, Liu Y, Varghese B. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvation. J Biophotonics. 2012;5:194–9.

    Article  PubMed  Google Scholar 

  9. Kennedy PK. A first model for computation of laser-induced breakdown thresholds in ocular and acqueous media: Part I – Theory. IEEE J Quantum Electron. 1995;31:2241–9.

    Article  CAS  Google Scholar 

  10. Kennedy PK, Boppart SA, Hammer DX, Rockwell BA, Noojin GD, Roach WP. A first model for computation of laser-induced breakdown thresholds in ocular and acqueous media: Part II – Comparison to experiments. IEEE J Quantum Electron. 1995;31:2250–7.

    Article  CAS  Google Scholar 

  11. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524–7.

    Article  CAS  PubMed  Google Scholar 

  12. Ho DM, London R, Zimmerman GB, Young DA. Laser-tattoo removal: A study of the mechanism and the optimal treatment strategy via computer simulations. Lasers Surg Med. 2002;30:389–97.

    Article  PubMed  Google Scholar 

  13. Goldman MP, Bennet RG. Treatment of telangiectasia: A review. J Am Acad Dermatol. 1987;17:167–82.

    Article  CAS  PubMed  Google Scholar 

  14. Tan OT, Murray S, Urban AK. Action spectrum of vascular specific injury using pulsed radiation. J Invest Dermatol. 1989;92:868–71.

    Article  CAS  PubMed  Google Scholar 

  15. Kienle A, Hibst R. Optimal parameters for laser treatment of leg telangectasia. Lasers Surg Med. 1997;20:346–53.

    Article  CAS  PubMed  Google Scholar 

  16. Hsia J, Lowery JA, Zellickson B. Treatment of leg telangectasia using long-pulse dye laser at 595 nm. Lasers Surg Med. 1997;20:1–5.

    Article  CAS  PubMed  Google Scholar 

  17. Kunishige JH, Glodberg LH, Friedman PM. Laser therapy for leg veins. Clin Dermatol. 2007;25:454–61.

    Article  PubMed  Google Scholar 

  18. Høgsberg T, Loeschner K, Löft D, Serup J. Tattoo inks in general usage contain nanoparticles. Brit Jour Derm. 2011;165:1210–8.

    Article  Google Scholar 

  19. Taylor CR, Anderson RR, Gange RW, Michaud NA, Flotte TJ. Light and electron microscopy analysis of tattoo treated by Q-switched ruby laser. J Invest Dermatol. 1991;97:131–6.

    Article  CAS  PubMed  Google Scholar 

  20. Kilmer SL. Laser treatment of tattoos. Dematol Clin. 1997;15:409–17.

    Article  CAS  Google Scholar 

  21. Jow T, Brrown A, Goldberg DJ. Patient compliance as a major determinant of laser tattoo removal success rate: a 10-year retrospective study. J Cosmet Laser Ther. 2010;12:166–9.

    Article  PubMed  Google Scholar 

  22. Bernstein EF, Bhawalkar J, Schomacker KT. A novel titanium sapphire picosecond-domain laser safely and efectively removes purple, blue and green tattoo inks. Lasers Surg Med. 2018;50:704–10.

    Article  PubMed Central  Google Scholar 

  23. Ross V, Naseef G, Lin C, Kelly M, Michaud N, Flotte T, Raythen J, Anderson RR. Comparison of responses of tattoos to picosecond and nanosecond Q-switched neodymium: YAG lasers. Arch Dermatol. 1998;134:167–71.

    Article  CAS  PubMed  Google Scholar 

  24. Lorgeou A, Perillat Y, Gral N, Lagrange S, Lacour JP, Passeron T. Comparison of two picosecond lasers to a nanosecond laser for treating tattoos: a prospective randomized study on 49 patients. J Eur Acad Dermatol Veneorol. 2017;32:265–70.

    Article  Google Scholar 

  25. Pinto F, Groβe-Büning S, Karsai S, et al. Neodymium-doped yttrium aluminium garnet (Nd:YAG) 1064-nm picosecond laser vs Nd:YAG 1064-nm nanosecond laser in tattoo removal: a randomized controlled single-blind clinical trial. Br J Dematol. 2017;176:457–64.

    Article  CAS  Google Scholar 

  26. Brauer JA, Reddy KK, Anolik R, et al. Successful and rapid treatment of blue and green tattoo pigment with a novel picosecond laser. Arch Dermatol. 2012;148:820–3.

    Article  PubMed  Google Scholar 

  27. Fitzpatrick RE, Goldman MP. Tattoo removal using the alexandrite laser. Arch Dermatol. 1994;130:1508–14.

    Article  CAS  PubMed  Google Scholar 

  28. Leuenberger ML, Mulas MW, Hata TR, Goldman MP, Fitzpatrik RE, Grevelink JM. Comparison of the Q-switched alexandrite, Nd:YAG and ruby lasers in treating blue-black tattoos. Dematol Surg. 1999;25:10–4.

    Article  CAS  Google Scholar 

  29. Bernstein EF, Schomaker KT, Basilavecchio LD, Plugis JM, Bhawalkar JD. A novel dual-wavelength, Nd:YAG, Picosecond-domain laser safely and effectively removes multicolor tattoos. Lasers Surg Med. 2015;47:542–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alabdulrazzaq H, Braur JA, Bae YS, Geronemus RG. Clearance of yellow tattoo ink with a novel 532-nm picosecond laser. Lasers Surg Med. 2015;47:285–8.

    Article  PubMed  Google Scholar 

  31. Bencini PL, Cazzaniga S, Tourlaki A, Galimberti MG. Removal of tattoos by Q-switched laser: variable influencing outcome and sequelae in a large cohort of treated patients. Arch Dermatol. 2012;148:1364–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orazio Svelto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Svelto, O. (2020). Laser Light and Light–tissue Interaction. In: Fimiani, M., Rubegni, P., Cinotti, E. (eds) Technology in Practical Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-030-45351-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45351-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45350-3

  • Online ISBN: 978-3-030-45351-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics