Skip to main content

Electrical Impedance in Dermatology

  • Chapter
  • First Online:
Technology in Practical Dermatology

Abstract

Electrical impedance spectroscopy (EIS) has been used in dermatology in the last decades for the study of inflammatory dermatosis and skin tumours. Multiple applications in the study of contact dermatitis and atopic eczema have been proposed. More recently NevisenseR (SCIBASE, Sweden), a device using EIS received the approval for the application in the detection of malignant melanoma with CE marked in Europe, has TGA approval in Australia, and now also a FDA clearance in the United States. In this chapter, we review the principles of EIS, the research in recent years, the device approved for clinical use, the examination procedure and EIS evidence within dermatology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grimnes S, Martinsen Ø. Bioimpedance and bioelectricity basics. London (UK): Academic Press; 2000.

    Google Scholar 

  2. Ollmar S, Nicander I. Within and beyond the skin barrier. In: Fluhr JW, Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin—Water and the stratum corneum. 2nd ed. Boca Raton: CRC Press; 2005. p. 335–50.

    Google Scholar 

  3. Emtestam L, Nicander I, Stenström M, Ollmar S. Electrical impedance of nodular basal cell carcinoma: a pilot study. Dermatology. 1998;197:313–6.

    CAS  PubMed  Google Scholar 

  4. Åberg P, Nicander I, Holmgren U, Geladi P, Ollmar S. Assessment of skin lesions and skin cancer using simple electrical impedance indices. Skin Res Technol. 2003;9:257–61.

    PubMed  Google Scholar 

  5. Beetner DG, Kapoor S, Manjunath S, Zhou X, Stoecker W. Differentiation among basal cell carcinoma, benign lesions, and normal skin using electrical impedance. IEEE Trans Biomed Eng. 2003;50:1020–5.

    PubMed  Google Scholar 

  6. Lobo B, Hermosa C, Abella A, Gordo F. Electrical impedance tomography. Ann Transl Med. 2018 Jan;6(2):26.

    PubMed  PubMed Central  Google Scholar 

  7. Sanchez B, Rutkove SB. Electrical impedance myography and its applications in neuromuscular disorders. Neurotherapeutics. 2017 Jan;14(1):107–18.

    PubMed  Google Scholar 

  8. Åberg P, Nicander I, Holmgren U, Hansson J, Ollmar S. Bioimpedance as a potential diagnostic decision tool for skin neoplasms. In Proc. EMBEC’02, Vienna, vol. 3, p. 80–81, Dec. 2002.

    Google Scholar 

  9. Dua R, Beetner DG, Stoecker WV, Wunsch DC. Detection of basal cell carcinoma using electrical impedance and neural networks. IEEE Trans Biomed Eng. 2004;51(1):66–71.

    PubMed  Google Scholar 

  10. Åberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S. Skin cancer identification using multi-frequency electrical impedance—a potential screening tool. IEEE Trans Biomed Eng. 2004;51(12):2097–102.

    PubMed  Google Scholar 

  11. Åberg P, Nicander I, Ollmar S. Minimally invasive electrical impedance spectroscopy of skin exemplified by skin cancer assessments. In Proc. IEEE EMBS’03, Cancun (MX), p. 3211–3214, Sep. 2003.

    Google Scholar 

  12. Åberg P, Geladi P, Nicander I, Hansson J, Holmgren U, Ollmar S. Noninvasive and microinvasive electrical impedance spectra of skin cancer—a comparison between two techniques. Skin Res Technol. 2005;11:281–6.

    PubMed  Google Scholar 

  13. Birgersson U. Electrical impedance of human skin and Tissue alterations: mathematical modeling and measurements. Thesis 2012. Department of clinical science, intervention and technology, Karolinska institutet, Stockholm, Sweden, Open Access publication.

    Google Scholar 

  14. https://scibase.com/the-nevisense.

  15. Johnsen GK, Martinsen OG, Grimnes S. Estimation of in vivo water content of the stratum corneum from electrical measurements. Open Biomed Eng J. 2009;3:8–12.

    PubMed  PubMed Central  Google Scholar 

  16. Martinsen OG, Grimnes S, Sveen O. Dielectric properties of some keratinised tissues. Part 1: Stratum corneum and nail in situ. Med Biol Eng Comput. 1997;35:172–6.

    CAS  PubMed  Google Scholar 

  17. Yamamoto T, Yamamoto Y. Electrical properties of the epidermal stratum corneum. Med Biol Eng. 1976;14:151–8.

    CAS  PubMed  Google Scholar 

  18. Nicander I, Norlen L, Brockstedt U, Rozell BL, Forslind B, et al. Electrical impedance and other physical parameters as related to lipid content of human stratum corneum. Skin Res Technol. 1998;4:213–21.

    CAS  PubMed  Google Scholar 

  19. Grimnes S. Skin impedance and electro-osmosis in the human epidermis. Med Biol Eng Comput. 1983;21:739–49.

    CAS  PubMed  Google Scholar 

  20. Martinsen OG, Grimnes S. Facts and myths about electrical measurement of stratum corneum hydration state. Dermatology. 2001;202:87–9.

    CAS  PubMed  Google Scholar 

  21. Sethson B, Han S, Ollmar S, Nicander I, Jonsson G, et al. Multivariate analysis of skin impedance data in long-term type 1 diabetic patients. Chemometr Intell Lab Syst. 1998;44:381–94.

    Google Scholar 

  22. Birgersson U, Birgersson E, Aberg P, Nicander I, Ollmar S. Non-invasive bioimpedance of intact skin: mathematical modeling and experiments. Physiol Meas. 2011;32:1–18.

    PubMed  Google Scholar 

  23. Curdy C, Naik A, Kalia YN, Alberti I, Guy RH. Non-invasive assessment of the effect of formulation excipients on stratum corneum barrier function in vivo. Int J Pharm. 2004;271:251–6.

    CAS  PubMed  Google Scholar 

  24. Nicander I, Nyren M, Emtestam L, Ollmar S. Baseline electrical impedance measurements at various skin sites―related to age and sex. Skin Res Technol. 1997;3:252–8.

    CAS  PubMed  Google Scholar 

  25. Ollmar S, Nyren M, Nicander I, Emtestam L. Electrical impedance compared with other non-invasive bioengineering techniques and visual scoring for detection of irritation in human skin. Br J Dermatol. 1994;130:29–36.

    CAS  PubMed  Google Scholar 

  26. Nicander I, Ollmar S, Eek A, Lundh Rozell B, Emtestam L. Correlation of impedance response patterns to histological findings in irritant skin reactions induced by various surfactants. Br J Dermatol. 1996;134:221–8.

    CAS  PubMed  Google Scholar 

  27. Nyren M, Kuzmina N, Emtestam L. Electrical impedance as a potential tool to distinguish between allergic and irritant contact dermatitis. J Am Acad Dermatol. 2003;48:394–400.

    PubMed  Google Scholar 

  28. Glickman YA, Filo O, David M, Yayon A, Topaz M, Zamir B, Ginzburg A, Rozenman D, Kenan G. Electrical impedance scanning: a new approach to skin cancer diagnosis. Skin Res Technol. 2003 Aug;9(3):262–8.

    PubMed  Google Scholar 

  29. Kuzmina N, Talme T, Lapins J, Emtestam L. Non-invasive preoperative assessment of basal cell carcinoma of nodular and superficial types. Skin Res Technol. 2005;11:196–200.

    PubMed  Google Scholar 

  30. Beetner DG, Kapoor S, Manjunath S, Zhou X, Stoecker WV. Differentiation among basal cell carcinoma, benign lesions, and normal skin using electric impedance. IEEE Trans Biomed Eng. 2003;50:1020–5.

    PubMed  Google Scholar 

  31. Nicander I, Hansson J, Geladi P, Holmgren U, et al. Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE Trans Biomed Eng. 2004;51:2097–102.

    PubMed  Google Scholar 

  32. Emtestam L, Nicander I, Stenstrom M, Ollmar S. Electrical impedance of nodular basal cell carcinoma: a pilot study. Dermatology. 1998;197:313–6.

    CAS  PubMed  Google Scholar 

  33. Ollmar S, Emtestam L. Electrical impedance applied to non-invasive detection of irritation in skin. Contact Dermatitis. 1992;27(1):37–42.

    CAS  PubMed  Google Scholar 

  34. Emtestam L, Ollmar S. Electrical impedance index in human skin: measurements after occlusion, in 5 anatomical regions and in mild irritant contact dermatitis. Contact Dermatitis. 1993 Feb;28(2):104–8.

    CAS  PubMed  Google Scholar 

  35. Ollmar S, Nyrén M, Nicander I, Emtestam L. Electrical impedance compared with other non-invasive bioengineering techniques and visual scoring for detection of irritation in human skin. Br J Dermatol. 1994 Jan;130(1):29–36.

    CAS  PubMed  Google Scholar 

  36. Nicander I, Ollmar S, Rozell BL, Eek A, Emtestam L. Electrical impedance measured to five skin depths in mild irritant dermatitis induced by sodium lauryl sulphate. Br J Dermatol. 1995;132(5):718–24.

    CAS  PubMed  Google Scholar 

  37. Nyrén M, Ollmar S, Nicander I, Emtestam L. An electrical impedance technique for assessment of wheals. Allergy. 1996;51(12):923–6.

    PubMed  Google Scholar 

  38. Nicander I, Rundquist L, Ollmar S. Electric impedance measurements at six different anatomic locations of macroscopically normal human oral mucosa. Acta Odontol Scand. 1997;55(2):88–93.

    CAS  PubMed  Google Scholar 

  39. Nicander I, Rozell BL, Rundquist L, Ollmar S. Electrical impedance. A method to evaluate subtle changes of the human oral mucosa. Eur J Oral Sci. 1997;105(6):576–82.

    CAS  PubMed  Google Scholar 

  40. Ollmar S. Quantification of skin and mucosal reactions by electrical impedance. Med Biol Eng Comput. 1996;34(Supplement 1, Part 2):145–6.

    Google Scholar 

  41. Emtestam L, Kuzmina N, Talme T. Evaluation of the effects of topical clobetasol propionate by visual score, electrical impedance and laser Doppler flowmetry. Skin Res Technol. 2007;13(1):73–8.

    CAS  PubMed  Google Scholar 

  42. Norlen L, Nicander I, Lundh Rozell B, Ollmar S, Forslind B. Inter- and intra-individual differences in human stratum corneum lipid content related to physical parameters of skin barrier function in vivo. J Invest Dermatol. 1999;112(1):72–7.

    CAS  PubMed  Google Scholar 

  43. Nicander I, Ollmar S. Clinically normal atopic skin vs. non-atopic skin as seen through electrical impedance. Skin Res Technol. 2004;10(3):178–83.

    PubMed  Google Scholar 

  44. Hung CY, Sun PL, Chiang SJ, Jaw FS. In vitro differential diagnosis of clavus and verruca by a predictive model generated from electrical impedance. PLoS One. 2014;9(4):e93647.

    PubMed  PubMed Central  Google Scholar 

  45. Aberg P, Birgersson U, Elsner P, Mohr P, Ollmar S. Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma. Exp Dermatol. 2011;20(8):648–52.

    PubMed  Google Scholar 

  46. Mohr P, Birgersson U, Berking C, Henderson C, Trefzer U, Kemeny L, Sunderkötter C, Dirschka T, Motley R, Frohm-Nilsson M, Reinhold U, Loquai C, Braun R, Nyberg F, Paoli J. Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma. Skin Res Technol. 2013;19(2):75–83.

    PubMed  Google Scholar 

  47. Malvehy J, Hauschild A, Curiel-Lewandrowski C, et al. Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety. Br J Dermatol. 2014;171(5):1099–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rocha L, Menzies SW, Lo S, Avramidis M, Khoury R, Jackett L, Guitera P. Analysis of an electrical impedance spectroscopy system in short-term digital dermoscopy imaging of melanocytic lesions. Br J Dermatol. 2017;177(5):1432–8.

    CAS  PubMed  Google Scholar 

  49. Svoboda RM, Prado G, Mirsky RS, Rigel DS. Assedssment of clinician accuracy for diagnosing melanoma on basis of electrical impedance spectroscopy score plus morphology versus lesion morphology alone. J Am Acad Dermatol. 2018; https://doi.org/10.1016/j.jaad.2018.08.048.

  50. Braun RP, Mangana J, Goldinger S, French L, Dummer R, Marghoob AA. Electrical impedance spectroscopy in skin cancer diagnosis. Dermatol Clin. 2017;35(4):489–93.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Malvehy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malvehy, J., Barreiro-Capurro, A., Puig, S. (2020). Electrical Impedance in Dermatology. In: Fimiani, M., Rubegni, P., Cinotti, E. (eds) Technology in Practical Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-030-45351-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45351-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45350-3

  • Online ISBN: 978-3-030-45351-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics