Skip to main content

Integrated Design Exploration of Materials, Products, and Manufacturing Processes Using Goal-Oriented, Inverse Design Method

  • Chapter
  • First Online:
Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes

Abstract

Steel manufacturers focus on developing new grades of steel with improved properties and performance. The careful managing of material processing during steel manufacturing will lead to the development of steels with a range of mechanical properties resulting in the improved performance of products. A round rod is produced after passing the raw steel through several manufacturing processes such as casting, reheating, rolling , and cooling . This round rod forms the input material for gear production. The chemical composition of the steel including the segregation of alloying elements, the deformation history during rolling , the cooling after rolling , and the microstructure generated define the end properties of the rolled product. The presence of large numbers of design variables, constraints and bounds, conflicting goals, and sequential information/material flow during material processing makes the steel rod making process chain highly complex. Many plant trials are therefore required to produce a new steel grade with desired properties and performance. These trials are usually expensive and time-consuming. An alternative is to carry out simulation-based, integrated design exploration of the different manufacturing processes involved in exploiting the advances in computational modeling and identifying a ranged set of solutions that satisfy the requirements, both of the steel manufacturing process and the end rod product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, B. L., Kalidindi, S., & Fullwood, D. T. (2013). Microstructure-sensitive design for performance optimization. Butterworth-Heinemann.

    Google Scholar 

  • Allen, J. K., Panchal, J., Mistree, F., Singh, A. K., & Gautham, B. (2015). Uncertainty management in the integrated realization of materials and components. In Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME). Wiley.

    Google Scholar 

  • Bodnar, R., & Hansen, S. (1994). Effects of austenite grain size and cooling rate on Widmanstätten ferrite formation in low-alloy steels. Metallurgical and Materials Transactions A, 25(4), 665–675.

    Google Scholar 

  • Bras, B., & Mistree, F. (1993). Robust design using compromise decision support problems. Engineering Optimization, 21(3), 213–239.

    Google Scholar 

  • Chen, W., Allen, J. K., & Mistree, F. (1997). A robust concept exploration method for enhancing productivity in concurrent systems design. Concurrent Engineering, 5(3), 203–217.

    Google Scholar 

  • Choi, H.-J., Mcdowell, D. L., Allen, J. K., & Mistree, F. (2008a). An inductive design exploration method for hierarchical systems design under uncertainty. Engineering Optimization, 40(4), 287–307.

    Google Scholar 

  • Choi, H., McDowell, D. L., Allen, J. K., Rosen, D., & Mistree, F. (2008b). An inductive design exploration method for robust multiscale materials design. Journal of Mechanical Design, 130(3), 031402.

    Google Scholar 

  • Choquet, P., Fabregue, P., Giusti, J., Chamont, B., Pezant, J., & Blanchet, F. (1990). Modelling of forces, structure, and final properties during the hot rolling process on the hot strip mill. In Mathematical Modelling of Hot Rolling of Steel (pp. 34–43).

    Google Scholar 

  • Dieter, G. E., Kuhn, H. A., & Semiatin, S. L. (2003). Handbook of workability and process design. ASM International.

    Google Scholar 

  • Donnay, B., Herman, J., Leroy, V., Lotter, U., Grossterlinden, R., & Pircher, H. (1996). Microstructure evolution of C-Mn steels in the hot-deformation process: The stripcam model. In 2nd International Conference on Modelling of Metal Rolling Processes.

    Google Scholar 

  • Gladman, T., McIvor, I., & Pickering, F. (1972). Some aspects of the structure-property relationships in high-C ferrite-pearlite steels. Journal of the Iron and Steel Institute, 210(12), 916–930.

    Google Scholar 

  • Gladman, T., Dulieu, D., & McIvor, I. D. (1977). Structure/property relationships in high-strength micro-alloyed steels. Proceedings of the Conference on Microalloying, 75(1977), 32–55.

    Google Scholar 

  • Hodgson, P., & Gibbs, R. (1992). A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels. ISIJ International, 32(12), 1329–1338.

    Google Scholar 

  • Horstemeyer, M. F. (2012). Integrated computational materials engineering (ICME) for metals: using multiscale modeling to invigorate engineering design with science. Wiley.

    Google Scholar 

  • Horstemeyer, M. F. (2018). Integrated computational materials engineering (ICME) for metals: concepts and case studies. Wiley.

    Google Scholar 

  • Jägle, E. (2007). Modelling of microstructural banding during transformations in steel’. Department of Materials Science & Metallurgy.

    Google Scholar 

  • Jones, S., & Bhadeshia, H. (1997a). Competitive formation of inter-and intragranularly nucleated ferrite. Metallurgical and Materials Transactions A, 28(10), 2005–2013.

    Google Scholar 

  • Jones, S., & Bhadeshia, H. (1997b). Kinetics of the simultaneous decomposition of austenite into several transformation products. Acta Materialia, 45(7), 2911–2920.

    Google Scholar 

  • Jones, S. J., Bhadeshia, H. K. D. H. (2017). Program STRUCTURE on the Materials Algorithm Project web site. Retrieved February 4, 2017, from http://www.msm.cam.ac.uk/map/steel/programs/structure.html.

  • Kalidindi, S. R., Niezgoda, S. R., Landi, G., Vachhani, S., & Fast, T. (2010). A novel framework for building materials knowledge systems. Computers, Materials, & Continua, 17(2), 103–125.

    Google Scholar 

  • Kalidindi, S. R., Niezgoda, S. R., & Salem, A. A. (2011). Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM Journal of the Minerals Metals and Materials Society, 63(4), 34–41.

    Google Scholar 

  • Kejian, H., & Baker, T. (1993). The effects of small titanium additions on the mechanical properties and the microstructures of controlled rolled niobium-bearing HSLA plate steels. Materials Science and Engineering A, 169(1–2), 53–65.

    Google Scholar 

  • Kern, P. C., Priddy, M. W., Ellis, B. D., & McDowell, D. L. (2017). pyDEM: A generalized implementation of the inductive design exploration method. Materials & Design, 134, 293–300.

    Google Scholar 

  • Kuziak, R., Cheng, Y.-W., Glowacki, M., & Pietrzyk, M. (1997). Modeling of the microstructure and mechanical properties of steels during thermomechanical processing. NIST Technical Note(USA), 1393, 72.

    Google Scholar 

  • Kwon, H.-C., Lee, Y., Kim, S.-Y., Woo, J.-S., & Im, Y.-T. (2003). Numerical prediction of austenite grain size in round-oval-round bar rolling. ISIJ International, 43(5), 676–683.

    Google Scholar 

  • LeBon, A., & deSaint-Martin, L. (1977). Using laboratory simulations to improve rolling schedules and equipment. Proceedings of the Conference on Microalloying, 75(1977), 90–99.

    Google Scholar 

  • Majta, J., Kuziak, R., Pietrzyk, M., & Krzton, H. (1996). Use of the computer simulation to predict mechanical properties of C-Mn steel, after thermomechanical processing. Journal of Materials Processing Technology, 60(1–4), 581–588.

    Google Scholar 

  • McDowell, D. L. (2018). Microstructure-sensitive computational structure-property relations in materials design. Computational materials system design (pp. 1–25). Cham: Springer.

    Google Scholar 

  • McDowell, D. L., & Olson, G. (2008). Concurrent design of hierarchical materials and structures. Scientific modeling and simulations (pp. 207–240). Dordrecht: Springer.

    Google Scholar 

  • McDowell, D. L., & Kalidindi, S. R. (2016). The materials innovation ecosystem: a key enabler for the materials genome initiative. MRS Bulletin, 41(4), 326–337.

    Google Scholar 

  • McDowell, D. L., Choi, H. J., Panchal, J., Austin, R., Allen, J., & Mistree, F. (2007). Plasticity-related microstructure-property relations for materials design. In Key engineering materials. Trans Tech Publ.

    Google Scholar 

  • McDowell, D. L., Panchal, J., Choi, H.-J., Seepersad, C., Allen, J., & Mistree, F. (2009). Integrated design of multiscale, multifunctional materials and products. Butterworth-Heinemann.

    Google Scholar 

  • Mistree, F., Hughes, O. F., & Bras, B. (1993) Compromise decision support problem and the adaptive linear programming algorithm. Progress in Astronautics and Aeronautics, 150, 251.

    Google Scholar 

  • Mistree, F., Patel, B., & Vadde, S. (1994). On modeling multiple objectives and multi-level decisions in concurrent design. Advances in Design Automation, 69(2), 151–161.

    Google Scholar 

  • Nellippallil, A. B. (2018). The integrated realization of materials, products and associated manufacturing processes. Ph.D. Dissertation, School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman.

    Google Scholar 

  • Nellippallil, A. B., Song, K. N., Goh, C.-H., Zagade, P., Gautham, B., Allen, J. K., & Mistree, F. (2016). A goal oriented, sequential process design of a multi-stage hot rod rolling system. ASME Design Automation Conference, Paper Number: DETC2016-59402.

    Google Scholar 

  • Nellippallil, A. B., De, P. S., Gupta, A., Goyal, S., & Singh, A. K. (2017a). Hot rolling of a non-heat treatable aluminum alloy: Thermo-mechanical and microstructure evolution model. Transactions of the Indian Institute of Metals, 70(5), 1387–1398.

    Google Scholar 

  • Nellippallil, A. B., Song, K. N., Goh, C.-H., Zagade, P., Gautham, B., Allen, J. K., & Mistree, F. (2017b). A goal-oriented, sequential, inverse design method for the horizontal integration of a multi-stage hot rod rolling system. Journal of Mechanical Design, 139(3), 031403.

    Google Scholar 

  • Nellippallil, A. B., Allen, J. K., Mistree, F., Vignesh, R., Gautham, B. P., & Singh, A. K. (2017c). A goal-oriented, inverse decision-based design method to achieve the vertical and horizontal integration of models in a hot-rod rolling process chain. ASME Design Automation Conference, Paper Number DETC2017‐67570.

    Google Scholar 

  • Nellippallil, A. B., Rangaraj, V., Allen, J. K., Mistree, F., Gautham, B., & Singh, A. K. (2017d). A decision-based design method to explore the solution space for microstructure after cooling stage to realize the end mechanical properties of hot rolled product. In Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017). Springer.

    Google Scholar 

  • Nellippallil, A. B., Shukla, R., Ardham, S., Goh, C.-H., Allen, J. K., & Mistree, F. (2017e). Exploration of solution space to study thermo-mechanical behavior of AA5083 Al-alloy during hot rolling process. ASME Design Automation Conference, Paper Number: DETC2017‐68173.

    Google Scholar 

  • Nellippallil, A. B., Mohan, P., Allen, J. K., & Mistree, F. (2018a). Robust concept exploration of materials, products and associated manufacturing processes. ASME Design Automation Conference, Paper Number: DETC2018-85913.

    Google Scholar 

  • Nellippallil, A. B., Rangaraj, V., Gautham, B., Singh, A. K., Allen, J. K., & Mistree, F. (2018b). An inverse, decision-based design method for integrated design exploration of materials, products, and manufacturing processes. Journal of Mechanical Design, 140(11), 111403-111403-17.

    Google Scholar 

  • Nellippallil, A. B., Mohan, P., Allen, J. K., & Mistree, F. (2019). Inverse thermo-mechanical processing (ITMP) design of a steel rod during hot rolling process. ASME Design Automation Conference 2019, Paper Number: IDETC2019-97390.

    Google Scholar 

  • Olson, G. B. (1997). Computational design of hierarchically structured materials. Science, 277(5330), 1237–1242.

    Google Scholar 

  • Phadke, S., Pauskar, P., & Shivpuri, R. (2004). Computational modeling of phase transformations and mechanical properties during the cooling of hot rolled rod. Journal of Materials Processing Technology, 150(1), 107–115.

    Google Scholar 

  • Pietrzyk, M., Cser, L., & Lenard, J. (1999). Mathematical and physical simulation of the properties of hot rolled products. Elsevier.

    Google Scholar 

  • Roberts, W., Sandberg, A., Siwecki, T., & Werlefors, T. (1983). Prediction of microstructure development during recrystallization hot rolling of Ti–V steels. In HSLA Steels, Technology and Applications (pp. 67–84).

    Google Scholar 

  • Robson, J., & Bhadeshia, H. (1997). Modelling precipitation sequences in power plant steels part 1–kinetic theory. Materials Science and Technology, 13(8), 631–639.

    Google Scholar 

  • Sellars, C., & Beynon, J. (1984). High strength low alloy steels. Australasian Institute of Metals, Wollongong, Australia.

    Google Scholar 

  • Senuma, T., Suehiro, M., & Yada, H. (1992). Mathematical models for predicting microstructural evolution and mechanical properties of hot strips. ISIJ International, 32(3), 423–432.

    Google Scholar 

  • Shukla, R., Goyal, S., Singh, A. K., Panchal, J. H., Allen, J. K., & Mistree, F. (2015). Design exploration for determining the set points of continuous casting operation: An industrial application. Journal of Manufacturing Science and Engineering, 137(3), 034503.

    Google Scholar 

  • Suehiro, M., Sato, K., Tsukano, Y., Yada, H., Senuma, T., & Matsumura, Y. (1987). Computer modeling of microstructural change and strength of low carbon steel in hot strip rolling. Transactions of the Iron and Steel Institute of Japan, 27(6), 439–445.

    Google Scholar 

  • Taguchi, G. (1986). Introduction to quality engineering. Asian Productivity Organization, Distributed by the American Supplier Institute, Inc., Dearborn, MI.

    Google Scholar 

  • Tennyson, G., Shukla, R., Mangal, S., Sachi, S., & Singh, A. K. (2015). ICME for process scale-up: Importance of vertical and horizontal integration of models. In Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME 2015). Wiley.

    Google Scholar 

  • Vander Voort, G. (2015). The interlamellar spacing of pearlite. Practical Metallography, 52(8), 419–436.

    Google Scholar 

  • Yada, H. (1987). Prediction of microstructural changes and mechanical properties in hot strip rolling. In Accelerated Cooling of Rolled Steel (pp. 105–119).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Balu Nellippallil .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nellippallil, A.B., Allen, J.K., Gautham, B.P., Singh, A.K., Mistree, F. (2020). Integrated Design Exploration of Materials, Products, and Manufacturing Processes Using Goal-Oriented, Inverse Design Method. In: Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45324-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45324-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45323-7

  • Online ISBN: 978-3-030-45324-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics