Skip to main content

Systems-Based Design Architecture for Integrated Design of Materials, Products, and Associated Manufacturing Processes

  • Chapter
  • First Online:
Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes

Abstract

In this chapter, the requirements for the systems-based design architecture for the integrated design of materials, products, and associated manufacturing processes—“rendering conceptual materials design more systematic”, “providing systematic, domain-independent, goal-oriented and multiobjective decision support”—are addressed. The component of the systems-based design architecture developed in this chapter is a systematic, function-based approach for the integrated design of the product and material concepts. The steel manufacturing process chain example is used in Chaps. 5 and 6 for validation of this component of the systems-based design architecture. The systematic function-based approach is used for addressing the requirement for systematic model integration and information and information flow. A concept exploration framework and a goal-oriented, inverse design (GoID ) method are developed to address the requirements of “systematic concept exploration” and “inverse design exploration”, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bras, B., & Mistree, F. (1993). Robust design using compromise decision support problems. Engineering Optimization, 21(3), 213–239.

    Google Scholar 

  • Chen, W., Allen, J. K., & Mistree, F. (1997). A robust concept exploration method for enhancing productivity in concurrent systems design. Concurrent Engineering, 5(3), 203–217.

    Google Scholar 

  • Choi, H., McDowell, D. L., Allen, J. K., Rosen, D., & Mistree, F. (2008). An inductive design exploration method for robust multiscale materials design. Journal of Mechanical Design, 130(3), 031402.

    Google Scholar 

  • Fonville, T. R., Nellippallil, A. B., Horstemeyer, M., Allen, J. K., & Mistree, F. (2019). A goal-oriented, inverse decision-based method for an American Football Helmet. ASME Design Automation Conference, Paper Number: IDETC2019-97388.

    Google Scholar 

  • Hodgson, P., & Gibbs, R. (1992). A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels. ISIJ International, 32(12), 1329–1338.

    Google Scholar 

  • Kern, P. C., Priddy, M. W., Ellis, B. D., & McDowell, D. L. (2017). pyDEM: A generalized implementation of the inductive design exploration method. Materials & Design, 134, 293–300.

    Google Scholar 

  • Kuziak, R., Cheng, Y.-W., Glowacki, M., & Pietrzyk, M. (1997). Modeling of the microstructure and mechanical properties of steels during thermomechanical processing. NIST Technical Note (USA), 1393, 72.

    Google Scholar 

  • Majta, J., Kuziak, R., Pietrzyk, M., & Krzton, H. (1996). Use of the computer simulation to predict mechanical properties of C-Mn steel, after thermomechanical processing. Journal of Materials Processing Technology, 60(1–4), 581–588.

    Google Scholar 

  • Messer, M. (2008). A systematic approach for integrated product, materials, and design-process design. Ph.D. Dissertation, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology.

    Google Scholar 

  • Ming, Z., Nellippallil, A. B., Yan, Y., Wang, G., Goh, C. H., Allen, J. K., & Mistree, F. (2018). PDSIDES—A knowledge-based platform for decision support in the design of engineering systems. Journal of Computing and Information Science in Engineering, 18(4).

    Google Scholar 

  • Mistree, F., Hughes, O. F., & Bras, B. (1993). Compromise decision support problem and the adaptive linear programming algorithm. Progress in Astronautics and Aeronautics, 150, 251–251.

    Google Scholar 

  • Nellippallil, A. B., Song, K. N., Goh, C.-H., Zagade, P., Gautham, B., Allen, J. K., & Mistree, F. (2016). A goal oriented, sequential process design of a multi-stage hot rod rolling system. ASME Design Automation Conference, Paper Number: DETC2016-59402.

    Google Scholar 

  • Nellippallil, A. B., Rangaraj, V., Allen, J. K., Mistree, F., Gautham, B., & Singh, A. K. (2017a). A decision-based design method to explore the solution space for microstructure after cooling stage to realize the end mechanical properties of hot rolled product. In Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017). Springer.

    Google Scholar 

  • Nellippallil, A. B., Rangaraj, V., Gautham, B., Singh, A. K., Allen, J. K., & Mistree, F. (2017b). A goal-oriented, inverse decision-based design method to achieve the vertical and horizontal integration of models in a hot rod rolling process chain. ASME Design Automation Conference, Paper Number: DETC2017‐67570.

    Google Scholar 

  • Nellippallil, A. B., Song, K. N., Goh, C.-H., Zagade, P., Gautham, B., Allen, J. K., & Mistree, F. (2017c). A goal-oriented, sequential, inverse design method for the horizontal integration of a multistage hot rod rolling system. Journal of Mechanical Design, 139(3), 031403.

    Google Scholar 

  • Nellippallil, A. B., Mohan, P., Allen, J. K., & Mistree, F. (2018a). Robust concept exploration of materials, products and associated manufacturing processes. ASME Design Automation Conference, Paper Number: DETC2018-85913.

    Google Scholar 

  • Nellippallil, A. B., Rangaraj, V., Gautham, B., Singh, A. K., Allen, J. K., & Mistree, F. (2018b). An inverse, decision-based design method for integrated design exploration of materials, products, and manufacturing processes. Journal of Mechanical Design, 140(11), 111403-111403-17.

    Google Scholar 

  • Nellippallil, A. B., Mohan, P., Allen, J. K., & Mistree, F. (2019). Inverse Thermo-Mechanical Processing (ITMP) design of a steel rod during hot rolling process. ASME Design Automation Conference 2019, Paper Number: IDETC2019-97390.

    Google Scholar 

  • Nellippallil, A. B., Mohan, P., Allen, J. K., & Mistree, F. (2020). An inverse, decision-based design method for robust concept exploration. Journal of Mechanical Design, https://doi.org/10.1115/1.4045877.

  • Olson, G. B. (1997). Computational design of hierarchically structured materials. Science, 277(5330), 1237–1242.

    Google Scholar 

  • Pahl, G., & Beitz, W. (1996). Engineering design: A systematic approach. London: Springer-Verlag.

    Google Scholar 

  • Pahl, G., & Beitz, W. (2013). Engineering design: A systematic approach. Springer Science & Business Media.

    Google Scholar 

  • Phadke, S., Pauskar, P., & Shivpuri, R. (2004). Computational modeling of phase transformations and mechanical properties during the cooling of hot rolled rod. Journal of Materials Processing Technology, 150(1), 107–115.

    Google Scholar 

  • Pietrzyk, M., Cser, L., & Lenard, J. (1999). Mathematical and physical simulation of the properties of hot rolled products. Elsevier.

    Google Scholar 

  • Simon, H. A. (2013). Administrative behavior. Simon and Schuster.

    Google Scholar 

  • Suh, N. P. (1990). The principles of design. Oxford University Press on Demand.

    Google Scholar 

  • Szykman, S., Racz, J. W., & Sriram, R. D. (1999). The representation of function in computer-based design. In ASME Design Engineering Technical Conferences, 11th International Conference on Design Theory and Methodology.

    Google Scholar 

  • Taguchi, G. (1986). Introduction to Quality Engineering. Dearborn, MI: Asian Productivity Organization, Distributed by the American Supplier Institute, Inc.

    Google Scholar 

  • Ullman, D. G. (1992). A taxonomy for mechanical design. Research in Engineering Design, 3(3), 179–189.

    Google Scholar 

  • Wang, R., Nellippallil, A. B., Wang, G., Yan, Y., Allen, J. K., & Mistree, F. (2018). Systematic design space exploration using a template-based ontological method. Advanced Engineering Informatics, 36, 163–177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Balu Nellippallil .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nellippallil, A.B., Allen, J.K., Gautham, B.P., Singh, A.K., Mistree, F. (2020). Systems-Based Design Architecture for Integrated Design of Materials, Products, and Associated Manufacturing Processes. In: Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45324-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45324-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45323-7

  • Online ISBN: 978-3-030-45324-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics