Skip to main content

Design Foundations—State-of-the-Art in Decision-Based Design, Robust Design Approaches, and Platform for Decision Support

  • Chapter
  • First Online:
Book cover Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes

Abstract

The objective in this chapter is to introduce and review the design foundations based on which the systems-based design architecture for integrated design of materials, products, and manufacturing processes design is developed. Besides the underlying decision-based design , systems design, and robust design approaches, methods and tools reviewed are classified in terms of concept, application to design process, and value in design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    GP was used as a short form for Gaussian Process in Chap. 2. The usage of GP in this section correspond to Goal Programming and is not related to the usage in Chap. 2.

References

  • Allen, J. K., Seepersad, C., Choi, H., & Mistree, F. (2006). Robust design for multiscale and multidisciplinary applications. Journal of Mechanical Design, 128(4), 832–843.

    Article  Google Scholar 

  • Bascaran, E. (1991). A model for the conceptual design of thermal systems; concurrent decisions in designing for concept. Ph.D. Dissertation, Department of Mechanical Engineering, University of Houston, Houston, TX.

    Google Scholar 

  • Bascaran, E., Bannerot, R. B., & Mistree, F. (1989). Hierarchical selection decision support problems in conceptual design. Engineering Optimization, 14(3), 207–238.

    Article  Google Scholar 

  • Beitz, W., Pahl, G., & Grote, K. (1996). Engineering design: a systematic approach, MRS Bulletin, vol. 71.

    Google Scholar 

  • Box, G. (1988). Signal-to-noise ratios, performance criteria, and transformations. Technometrics, 30(1), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  • Braha, D., & Maimon, O. (1997). The design process: properties, paradigms, and structure. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 27(2), 146–166.

    Article  Google Scholar 

  • Bras, B., & Mistree, F. (1993). Robust design using compromise decision support problems. Engineering Optimization, 21(3), 213–239.

    Article  Google Scholar 

  • Bras, B. A. (1993). Foundations for designing decision-based design processes. Ph.D. Dissertation, Department of Industrial Engineering, University of Houston, Houston, TX.

    Google Scholar 

  • Carroll, L., & Tenniel, J. (1865). Alice’s adventures in wonderland and Through the looking-grass, Macmillan.

    Google Scholar 

  • Chen, W., Allen, J. K., Mavris, D. N., & Mistree, F. (1996a). A concept exploration method for determining robust top-level specifications. Engineering Optimization + A35, 26(2), 137–158.

    Google Scholar 

  • Chen, W., Allen, J. K., Tsui, K.-L., & Mistree, F. (1996b). A procedure for robust design: minimizing variations caused by noise factors and control factors. Journal of Mechanical Design, 118(4), 478–485.

    Article  Google Scholar 

  • Chen, W., Allen, J. K., & Mistree, F. (1997). A robust concept exploration method for enhancing productivity in concurrent systems design. Concurrent Engineering, 5(3), 203–217.

    Article  Google Scholar 

  • Chen, W., Garimella, R., & Michelena, N. (2001). Robust design for improved vehicle handling under a range of maneuver conditions. Engineering Optimization, 33(3), 303–326.

    Article  Google Scholar 

  • Chen, W., Simpson, T. W., Allen, J. K., & Mistree, F. (1999). Satisfying ranged sets of design requirements using design capability indices as metrics. Engineering Optimization, 31(5), 615–619.

    Article  Google Scholar 

  • Chen, W., Tsui, K.-L., Allen, J. K., & Mistree, F. (1995). Integration of the response surface methodology with the compromise decision support problem in developing a general robust design procedure. ASME Design Automation Conference, (pp. 485–492). Boston: Massachusetts.

    Google Scholar 

  • Choi, H.-J. (2005). A robust design method for model and propagated uncertainty. Ph.D. Dissertation, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology.

    Google Scholar 

  • Choi, H.-J., Austin, R., Allen, J. K., McDowell, D. L., Mistree, F., & Benson, D. J. (2005). An approach for robust design of reactive power metal mixtures based on non-deterministic micro-scale shock simulation. Journal of Computer-Aided Materials Design, 12(1), 57–85.

    Article  Google Scholar 

  • Choi, H.-J., Mcdowell, D. L., Allen, J. K., & Mistree, F. (2008a). An inductive design exploration method for hierarchical systems design under uncertainty. Engineering Optimization, 40(4), 287–307.

    Article  Google Scholar 

  • Choi, H., McDowell, D. L., Allen, J. K., Rosen, D., & Mistree, F. (2008b). An inductive design exploration method for robust multiscale materials design. Journal of Mechanical Design, 130(3), 031402.

    Article  Google Scholar 

  • Ebro, M., & Howard, T. J. (2016). Robust design principles for reducing variation in functional performance. Journal of Engineering Design, 27(1–3), 75–92.

    Article  Google Scholar 

  • Evbuomwan, N., Sivaloganathan, S., & Jebb, A. (1996). A survey of design philosophies, models, methods and systems. Proceedings of the institution of mechanical engineers, part b: journal of engineering manufacture, 210(4), 301–320.

    Article  Google Scholar 

  • Finger, S., & Dixon, J. R. (1989a). A review of research in mechanical engineering design. Part I: Descriptive, prescriptive, and computer-based models of design processes. Research in Engineering Design, 1(1), 51–67.

    Article  Google Scholar 

  • Finger, S., & Dixon, J. R. (1989b). A review of research in mechanical engineering design. Part II: Representations, analysis, and design for the life cycle. Research in Engineering Design, 1(2), 121–137.

    Article  Google Scholar 

  • Gero, J. S. (1990). Design prototypes: a knowledge representation schema for design. AI magazine, 11(4), 26.

    Google Scholar 

  • Hazelrigg, G. A. (1996). Systems engineering: an approach to information-based design. NJ: Prentice Hall Upper Saddle River.

    Google Scholar 

  • Hazelrigg, G. A. (1998). A framework for decision-based engineering design. Journal of Mechanical Design, 120(4), 653–658.

    Article  Google Scholar 

  • Horstemeyer, M. F. (2012). Integrated Computational Materials Engineering (ICME) for metals: using multiscale modeling to invigorate engineering design with science, Wiley.

    Google Scholar 

  • Howard, R. A. (1966). Information value theory. IEEE Transactions on systems science and cybernetics, 2(1), 22–26.

    Article  Google Scholar 

  • Ignizio, J. P. (1976). Goal programming and extensions, Lexington Books.

    Google Scholar 

  • Ignizio, J. P. (1978). A review of goal programming: A tool for multiobjective analysis. Journal of the Operational Research Society, 29(11), 1109–1119.

    Article  MATH  Google Scholar 

  • Ignizio, J. P. (1983). Generalized goal programming an overview. Computers & Operations Research, 10(4), 277–289.

    Article  MathSciNet  Google Scholar 

  • Ignizio, J. P. (1985). Introduction to linear goal programming, Sage Publications.

    Google Scholar 

  • Isukapalli, S., Roy, A., & Georgopoulos, P. (1998). Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems. Risk Analysis, 18(3), 351–363.

    Article  Google Scholar 

  • Kamal, S. Z., Garson, J., & Mistree, F. (1992). Heuristic Decision Support Problems. Artificial Intelligence in Design’92, Springer: 883–902.

    Google Scholar 

  • Karandikar, H., & Mistree, F. (1993). Modelling concurrency in the design of composite structures. Structural optimization, vol. 150.

    Google Scholar 

  • Krippendorff, K. (2007). Design research, an oxymoron? Design research now, pp. 67–80.

    Google Scholar 

  • Kuppuraju, N., Ittimakin, P., & Mistree, F. (1985). Design through selection: a method that works. Design Studies, 6(2), 91–106.

    Article  Google Scholar 

  • McDowell, D. L. (2018). Microstructure-Sensitive Computational Structure-Property Relations in Materials Design (pp. 1–25). Computational Materials System Design: Springer.

    Google Scholar 

  • McDowell, D. L., & Olson, G. (2008). Concurrent design of hierarchical materials and structures. Scientific Modeling and Simulations: Springer, pp. 207–240.

    Google Scholar 

  • McDowell, D. L., Panchal, J., Choi, H.-J., Seepersad, C., Allen, J. & Mistree, F. (2009). Integrated design of multiscale, multifunctional materials and products, Butterworth-Heinemann.

    Google Scholar 

  • Messer, M. (2008). A systematic approach for integrated product, materials, and design-process design, Ph.D. Dissertation, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology.

    Google Scholar 

  • Miller, J. G. (1978). “Living systems theory,” Behavioral Sciences. New York: McGraw Hill.

    Google Scholar 

  • Ming, Z., Nellippallil, A. B., Yan, Y., Wang, G., Goh, C. H., Allen, J. K. & Mistree, F. (2018). PDSIDES—a knowledge-based platform for decision support in the design of engineering systems, Journal of Computing and Information Science in Engineering, 18(4).

    Google Scholar 

  • Mistree, F., & Allen, J. K. (1997). Position paper Optimization in decision-based design, Optimization in Industry, Palm Coast, FL, Mar, pp. 23–27.

    Google Scholar 

  • Mistree, F., Hughes, O. F. & Bras, B. (1993). Compromise decision support problem and the adaptive linear programming algorithm, Progress in Astronautics and Aeronautics, vol. 150, pp. 251–251.

    Google Scholar 

  • Mistree, F., & Kamal, S. (1985). DSIDES: Decision support in the design of engineering systems, University of Houston.

    Google Scholar 

  • Mistree, F., Marinopoulos, S., Jackson, D. M., & Shupe, J. A. (1988). The design of aircraft using the decision support problem technique. NASA Technical Report, Contract: NAS1-18117.

    Google Scholar 

  • Mistree, F., & Muster, D. (1990). Conceptual models for decision-based concurrent engineering design for the life cycle. Proceedings of the Second National Symposium on Concurrent Engineering, Morgantown, WV.

    Google Scholar 

  • Mistree, F., Smith, W., & Bras, B. (1993). A decision-based approach to concurrent design. Concurrent Engineering, Springer: 127–158.

    Google Scholar 

  • Mistree, F., Smith, W., Bras, B., Allen, J. & Muster, D. (1990). Decision-based design: a contemporary paradigm for ship design, Transactions, Society of Naval Architects and Marine Engineers, vol. 98, pp. 565–597.

    Google Scholar 

  • Mistree, F., Smith, W., Kamal, S., & Bras, B. (1991). Designing decisions: axioms, models and marine applications. Fourth International Marine Systems Design Conference.

    Google Scholar 

  • Murphy, T. E., Tsui, K.-L., & Allen, J. K. (2005). A review of robust design methods for multiple responses. Research in Engineering Design, 15(4), 201–215.

    Article  Google Scholar 

  • Muster, D., & Mistree, F. (1988). The Decision-Support Problem Technique in Engineering Design. The International Journal of Applied Engineering Education, 4(1), 23–33.

    Google Scholar 

  • Nair, V. N., Abraham, B., MacKay, J., Box, G., Kacker, R. N., Lorenzen, T. J., et al. (1992). Taguchi’s parameter design: a panel discussion. Technometrics, 34(2), 127–161.

    Article  MathSciNet  Google Scholar 

  • Nellippallil, A. B., Allen, J. K., Mistree, F., Vignesh, R., Gautham, B. P., & Singh, A. K. (2017). A Goal-Oriented, Inverse Decision-Based Design Method to Achieve the Vertical and Horizontal Integration of Models in a Hot-Rod Rolling Process Chain, ASME Design Automation Conference, Paper Number: DETC2017‐67570.

    Google Scholar 

  • Nellippallil, A. B., Ming, Z., Allen, J. K., & Mistree, F. (2019). Cloud-Based Materials and Product Realization—Fostering ICME Via Industry 4.0. Integrating Materials and Manufacturing Innovation, 8(2), 107–121.

    Article  Google Scholar 

  • Nellippallil, A. B., Mohan, P., Allen, J. K., & Mistree, F. (2020). An Inverse, Decision-Based Design Method for Robust Concept Exploration. Journal of Mechanical Design, https://doi.org/10.1115/1.4045877.

  • Nellippallil, A. B., Rangaraj, V., Gautham, B., Singh, A. K., Allen, J. K., & Mistree, F. (2018). An inverse, decision-based design method for integrated design exploration of materials, products, and manufacturing processes. Journal of Mechanical Design, 140(11), 111403-111403-17.

    Google Scholar 

  • Nellippallil, A. B., Song, K. N., Goh, C.-H., Zagade, P., Gautham, B., Allen, J. K., & Mistree, F. (2017). A goal-oriented, sequential, inverse design method for the horizontal integration of a multistage hot rod rolling system. Journal of Mechanical Design, 139(3), 031403.

    Google Scholar 

  • Olewnik, A. T., & Lewis, K. (2005). On validating engineering design decision support tools. Concurrent Engineering, 13(2), 111–122.

    Article  Google Scholar 

  • Olson, G. B. (1997). Computational design of hierarchically structured materials. Science, 277(5330), 1237–1242.

    Article  Google Scholar 

  • Pahl, G., & Beitz, W. (1996). Engineering design-A systematic approach, London: Springer-Verlag.

    Google Scholar 

  • Panchal, J., Fernández, M., Paredis, C., & Mistree, F. (2004). Template-Based Design Process Modeling. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference.

    Google Scholar 

  • Panchal, J. H. (2005). A framework for simulation-based integrated design of multiscale products and design processes, Ph.D. Dissertation, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology.

    Google Scholar 

  • Panchal, J. H., Fernández, M. G., Allen, J. K., Paredis, C. J., & Mistree, F. (2005). Facilitating meta-design via separation of problem, product, and process information. ASME 2005 International Mechanical Engineering Congress and Exposition, Paper Number: IMECE2005- 80013.

    Google Scholar 

  • Panchal, J. H., Kalidindi, S. R., & McDowell, D. L. (2013). Key computational modeling issues in integrated computational materials engineering. Computer-Aided Design, 45(1), 4–25.

    Article  Google Scholar 

  • Panchal, J. H., Paredis, C. J., Allen, J. K., & Mistree, F. (2006). Simulation model refinement for decision making via a value-of-information based metric. ASME Design Automation Conference, Paper Number: DETC2006-99433.

    Google Scholar 

  • Park, G.-J. (2007). Analytic methods for design practice. Springer Science & Business Media.

    Google Scholar 

  • Parkinson, A., Sorensen, C., & Pourhassan, N. (1993). A general approach for robust optimal design. Journal of Mechanical Design, 115(1), 74–80.

    Article  Google Scholar 

  • Phadke, M. S. (1995). Quality engineering using robust design. Prentice Hall PTR.

    Google Scholar 

  • Reddy, R., Smith, W., Mistree, F., Bras, B., Chen, W., Malhotra, A., Badhrinath, K., Lautenschlager, U., Pakala, R., & Vadde, S. (1996). DSIDES User Manual. Systems Realization Laboratory, Woodruff School of Mechanical Engineering, Georgia Institue of Technology, Atlanta, Georgia.

    Google Scholar 

  • Shannon, C. E. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal, 27(3), 379–423.

    Article  MathSciNet  MATH  Google Scholar 

  • Shannon, C. E. (1949). Communication Theory of Secrecy Systems. Bell System Technical Journal, 28(4), 656–715.

    Article  MathSciNet  MATH  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication. 1949. Urbana, IL: University of Illinois Press.

    MATH  Google Scholar 

  • Shoemaker, A. C., Tsui, K.-L., & Wu, C. J. (1991). Economical experimentation methods for robust design. Technometrics, 33(4), 415–427.

    Article  Google Scholar 

  • Shupe, J. A. (1988). Decision-based design: Taxonomy and implementation. Ph.D. Dissertation, Department of Mechanical Engineering, University of Houston, Houston, Texas.

    Google Scholar 

  • Simon, H. A. (1969). The sciences of the artificial MIT Press. Cambridge, MA.

    Google Scholar 

  • Simon, H. A. (1996). The sciences of the artificial. MIT press.

    Google Scholar 

  • Simpson, T. W., Chen, W., Allen, J. K., & Mistree, F. (1996). Conceptual design of a family of products through the use of the robust concept exploration method. 6th. AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization.

    Google Scholar 

  • Sinha, A., Bera, N., Allen, J. K., Panchal, J. H., & Mistree, F. (2013). Uncertainty management in the design of multiscale systems. Journal of Mechanical Design, 135(1), 011008.

    Article  Google Scholar 

  • Stone, J. V. (2015). Information theory: a tutorial introduction. Sebtel Press.

    Google Scholar 

  • Suh, N.P. (1990). The principles of design. Oxford University Press on Demand.

    Google Scholar 

  • Sundaresan, S., Ishii, K., & Houser, D.R. (1995). A robust optimization procedure with variations on design variables and constraints. Engineering Optimization+ A35, 24(2), 101–117.

    Google Scholar 

  • Taguchi, G. (1986a). Introduction to quality engineering, Asian Productivity Organization, Distributed by the American Supplier Institute, Inc., Dearborn, MI.

    Google Scholar 

  • Taguchi, G. (1986b). Introduction to quality engineering: designing quality into products and processes. Quality Resources.

    Google Scholar 

  • Taguchi, G. (1993). Robust technology development. Mechanical Engineering-CIME, 115(3), 60–63.

    Google Scholar 

  • Taguchi, G., & Clausing, D. (1990). Robust quality. Harvard Business Review, 68(1), 65–75.

    Google Scholar 

  • Tsui, K.-L. (1992). An overview of Taguchi method and newly developed statistical methods for robust design. Iie Transactions, 24(5), 44–57.

    Article  Google Scholar 

  • Vadde, S., Allen, J., & Mistree, F. (1994). Compromise decision support problems for hierarchical design involving uncertainty. Computers & structures, 52(4), 645–658.

    Article  MATH  Google Scholar 

  • Vadde, S., Allen, J., & Mistree, F. (1995). Selection using available assets catalog design: selection using available assets catalog design: selection using available assets. Engineering Optimization+ A35, 25(1), 45–64.

    Google Scholar 

  • Vining, G. G., & Myers, R. H. (1990). Combining Taguchi and response surface philosophies: a dual response approach. Journal of quality technology, 22(1), 38–45.

    Article  Google Scholar 

  • Wang, R., Nellippallil, A. B., Wang, G., Yan, Y., Allen, J. K., & Mistree, F. (2018). Systematic design space exploration using a template-based ontological method. Advanced Engineering Informatics, 36, 163–177.

    Google Scholar 

  • Wang, R., Nellippallil, A. B., Wang, G., Yan, Y., Allen, J. K., & Mistree, F. (2019). Ontology-based uncertainty management approach in designing of robust decision workflows. Journal of Engineering Design, 30(10–12), 726–757.

    Article  Google Scholar 

  • Welch, W., Yu, T., Kang, S. M., & Sacks, J. (1990). Computer experiments for quality control by parameter design. Journal of Quality Technology, 22(1), 15–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Balu Nellippallil .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nellippallil, A.B., Allen, J.K., Gautham, B.P., Singh, A.K., Mistree, F. (2020). Design Foundations—State-of-the-Art in Decision-Based Design, Robust Design Approaches, and Platform for Decision Support. In: Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45324-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45324-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45323-7

  • Online ISBN: 978-3-030-45324-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics