Skip to main content

Integrated Design of Materials, Products, and Manufacturing ProcessesCurrent Trends and Practices

  • Chapter
  • First Online:
Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes

Abstract

In this chapter, we review the current trends and practices in the integrated design of materials, products, and manufacturing processes. In Sect. 2.1, we discuss the field of integrated materials and product design. A detailed discussion on the current capabilities, the associated limitations, and the research opportunities that are worthy of investigation from the standpoint of material models, simulations, and databases; multiscale materials models and information linking; and materials design under uncertainty is carried out

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, B. L., Kalidindi, S., & Fullwood, D. T. (2013). Microstructure-sensitive design for performance optimization. Butterworth-Heinemann.

    Google Scholar 

  • Allen, J. K., Seepersad, C., Choi, H., & Mistree, F. (2006). Robust design for multiscale and multidisciplinary applications. Journal of Mechanical Design, 128(4), 832–843.

    Article  Google Scholar 

  • Arróyave, R., & McDowell, D. L. (2019). Systems approaches to materials design: past, present, and future. Annual Review of Materials Research, 49, 103–126.

    Google Scholar 

  • Ashby, M. F., & Cebon, D. (1993). Materials selection in mechanical design. Le Journal de Physique IV, 3, C7, C7-1–C7-9.

    Google Scholar 

  • Ashby, M. F., & Johnson, K. (2013). Materials and design: the art and science of material selection in product design. Butterworth-Heinemann.

    Google Scholar 

  • Asta, M., Ozolins, V., & Woodward, C. (2001). A first-principles approach to modeling alloy phase equilibria. JOM Journal of the Minerals Metals and Materials Society, 53(9), 16–19.

    Article  Google Scholar 

  • Bammann, D., Chiesa, M., Horstemeyer, M., & Weingarten, L. (1993). Failure in ductile materials using finite element methods. Structural Crashworthiness and Failure, 1–54.

    Google Scholar 

  • Bammann, D. J. (1990). Modeling temperature and strain rate dependent large deformations of metals. Applied Mechanics Reviews, 43(5), S312–S319.

    Article  Google Scholar 

  • Chang, T.-S., & Ward, A. C. (1995). Conceptual robustness in simultaneous engineering: a formulation in continuous spaces. Research in Engineering Design, 7(2), 67–85.

    Article  Google Scholar 

  • Chang, T.-S., Ward, A. C., Lee, J., & Jacox, E. H. (1994). Conceptual robustness in simultaneous engineering: an extension of Taguchi’s parameter design. Research in Engineering Design, 6(4), 211–222.

    Article  Google Scholar 

  • Chen, W., Allen, J. K., & Mistree, F. (1997). A robust concept exploration method for enhancing productivity in concurrent systems design. Concurrent Engineering, 5(3), 203–217.

    Article  Google Scholar 

  • Chen, W., & Lewis, K. (1999). Robust design approach for achieving flexibility in multidisciplinary design. AIAA Journal, 37(8), 982–989.

    Article  Google Scholar 

  • Chen, W., Simpson, T. W., Allen, J. K., & Mistree, F. (1999). Satisfying ranged sets of design requirements using design capability indices as metrics. Engineering Optimization, 31(5), 615–619.

    Article  Google Scholar 

  • Choi, H.-J., Austin, R., Allen, J. K., McDowell, D. L., Mistree, F., & Benson, D. J. (2005). An approach for robust design of reactive power metal mixtures based on non-deterministic micro-scale shock simulation. Journal of Computer-Aided Materials Design, 12(1), 57–85.

    Article  Google Scholar 

  • Choi, H.-J., Mcdowell, D. L., Allen, J. K., & Mistree, F. (2008a). An inductive design exploration method for hierarchical systems design under uncertainty. Engineering Optimization, 40(4), 287–307.

    Article  Google Scholar 

  • Choi, H., McDowell, D. L., Allen, J. K., Rosen, D., & Mistree, F. (2008b). An inductive design exploration method for robust multiscale materials design. Journal of Mechanical Design, 130(3), 031402.

    Article  Google Scholar 

  • Cotton, J., Frohlich, C., & Glamm, R. (2012). What boeing wants from integrated computational materials engineering for metallic materials. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA.

    Google Scholar 

  • Cuitino, A. M., & Ortiz, M. (1993). Computational modelling of single crystals. Modelling and Simulation in Materials Science and Engineering, 1(3), 225.

    Article  Google Scholar 

  • Du, X., & Chen, W. (2000). Methodology for managing the effect of uncertainty in simulation-based design. AIAA Journal, 38(8), 1471–1478.

    Article  Google Scholar 

  • Du, X., & Chen, W. (2002). Efficient uncertainty analysis methods for multidisciplinary robust design. AIAA Journal, 40(3), 545–552.

    Article  Google Scholar 

  • Forrester, A., Sobester, A., & Keane, A. (2008). Engineering Design via Surrogate Modelling: A Practical Guide. John Wiley & Sons.

    Google Scholar 

  • Gall, K., & Horstemeyer, M. F. (2000). Integration of basic materials research into the design of cast components by a multi-scale methodology. Journal of Engineering Materials and Technology, 122(3), 355–362.

    Article  Google Scholar 

  • Gu, X., Renaud, J. E., Batill, S. M., Brach, R. M., & Budhiraja, A. S. (2000). Worst case propagated uncertainty of multidisciplinary systems in robust design optimization. Structural and Multidisciplinary Optimization, 20(3), 190–213.

    Article  Google Scholar 

  • Gu, X. S., Renaud, J. E., & Penninger, C. L. (2006). Implicit uncertainty propagation for robust collaborative optimization. Journal of Mechanical Design, 128(4), 1001–1013.

    Article  Google Scholar 

  • Hollingsworth, P., & Mavris, D. (2003). Gaussian process meta-modeling: Comparison of gaussian process training methods. In AIAA’s 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Forum.

    Google Scholar 

  • Horstemeyer, M., Lathrop, J., Gokhale, A., & Dighe, M. (2000). Modeling stress state dependent damage evolution in a cast Al–Si–Mg aluminum alloy. Theoretical and Applied Fracture Mechanics, 33(1), 31–47.

    Article  Google Scholar 

  • Horstemeyer, M., & Wang, P. (2003). Cradle-to-grave simulation-based design incorporating multiscale microstructure-property modeling: Reinvigorating design with science. Journal of Computer-Aided Materials Design, 10(1), 13–34.

    Article  Google Scholar 

  • Horstemeyer, M. F. (2012). Integrated computational materials engineering (ICME) for metals: Using multiscale modeling to invigorate engineering design with science. John Wiley & Sons.

    Google Scholar 

  • Horstemeyer, M. F. (2018). Integrated computational materials engineering (ICME) for metals: Concepts and case studies. Wiley.

    Google Scholar 

  • Hyun, S., & Torquato, S. (2002). Optimal and manufacturable two-dimensional, Kagome-like cellular solids. Journal of Materials Research, 17(1), 137–144.

    Article  Google Scholar 

  • Isukapalli, S., Roy, A., & Georgopoulos, P. (1998). Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems. Risk Analysis, 18(3), 351–363.

    Article  Google Scholar 

  • Jin, R., Chen, W., & Sudjianto, A. (2005). An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference, 134(1), 268–287.

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4), 455–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Kalidindi, S. R. (2015). Hierarchical materials informatics: Novel analytics for materials data. Elsevier.

    Google Scholar 

  • Kalidindi, S. R., Khosravani, A., Yucel, B., Shanker, A., & Blekh, A. L. (2019). Data infrastructure elements in support of accelerated materials innovation: ELA, PyMKS, and MATIN. Integrating Materials and Manufacturing Innovation, 1–14.

    Google Scholar 

  • Kalidindi, S. R., Niezgoda, S. R., Landi, G., Vachhani, S., & Fast, T. (2010). A novel framework for building materials knowledge systems. Computers, Materials, & Continua, 17(2), 103–125.

    Google Scholar 

  • Kalidindi, S. R., Niezgoda, S. R., & Salem, A. A. (2011). Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM Journal of the Minerals Metals and Materials Society, 63(4), 34–41.

    Article  Google Scholar 

  • Kalsi, M., Hacker, K., & Lewis, K. (2001). A comprehensive robust design approach for decision trade-offs in complex systems design. Journal of Mechanical Design, 123(1), 1–10.

    Article  Google Scholar 

  • Khaleel, M. (2004). Multiscale mathematics initiative: A roadmap.

    Google Scholar 

  • Kleijnen, J. P. (2017). Design and analysis of simulation experiments: Tutorial. In Advances in modeling and simulation (pp. 135–158), Springer.

    Google Scholar 

  • Kleijnen, J. P. (2020). Simulation optimization through regression or kriging metamodels. In High-performance simulation-based optimization (pp. 115–135). Springer

    Google Scholar 

  • Kristensen, J., Subber, W., Zhang, Y., Ghosh, S., Kumar, N. C., Khan, G., et al. (2019). Industrial applications of intelligent adaptive sampling methods for multi-objective optimization. IntechOpen: Design Engineering and Manufacturing.

    Google Scholar 

  • Kulkarni, A. J., Krishnamurthy, K., Deshmukh, S. P., & Mishra, R. S. (2004). Microstructural optimization of alloys using a genetic algorithm. Materials Science and Engineering A, 372(1–2), 213–220.

    Article  Google Scholar 

  • Li, C., & Mahadevan, S. (2016). Role of calibration, validation, and relevance in multi-level uncertainty integration. Reliability Engineering & System Safety, 148, 32–43.

    Google Scholar 

  • Liu, W. K., Karpov, E., Zhang, S., & Park, H. (2004a). An introduction to computational nanomechanics and materials. Computer Methods in Applied Mechanics and Engineering, 193(17–20), 1529–1578.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Z.-K., & Chen, L.-Q. (2007). Integration of first-principles calculations, CALPHAD modeling, and phase-field simulations. In Applied computational materials modeling (pp. 171–213). Springer.

    Google Scholar 

  • Liu, Z.-K., Chen, L.-Q., Raghavan, P., Du, Q., Sofo, J. O., Langer, S. A., et al. (2004b). An integrated framework for multi-scale materials simulation and design. Journal of Computer-Aided Materials Design, 11(2–3), 183–199.

    Article  Google Scholar 

  • Liu, Z.-K., Chen, L.-Q., & Rajan, K. (2006). Linking length scales via materials informatics. JOM Journal of the Minerals Metals and Materials Society, 58(11), 42–50.

    Article  Google Scholar 

  • Lu, W., & Deng, Y.-M. (2004). A system modelling methodology for materials and engineering systems design integration. Materials and Design, 25(6), 459–469.

    Article  MathSciNet  Google Scholar 

  • Matthews, J., Klatt, T., Morris, C., Seepersad, C. C., Haberman, M., & Shahan, D. (2016). Hierarchical design of negative stiffness metamaterials using a bayesian network classifier. Journal of Mechanical Design, 138(4), 041404.

    Article  Google Scholar 

  • McDowell, D., & Story, T. (1998). New directions in materials design science and engineering. Report of a Workshop Sponsored by the US National Science Foundation, Georgia Institute of Technology and Morehouse College, Atlanta, GA.

    Google Scholar 

  • McDowell, D. L. (2008). Viscoplasticity of heterogeneous metallic materials. Materials Science and Engineering: R: Reports, 62(3), 67–123.

    Article  Google Scholar 

  • McDowell, D. L. (2018). Microstructure-sensitive computational structure-property relations in materials design. In Computational aterials system design (pp. 1–25). Springer.

    Google Scholar 

  • McDowell, D. L., Choi, H. J., Panchal, J., Austin, R., Allen, J., & Mistree, F. (2007). Plasticity-related microstructure-property relations for materials design. In Key engineering materials, Trans Tech Publ.

    Google Scholar 

  • McDowell, D. L., & Kalidindi, S. R. (2016). The materials innovation ecosystem: a key enabler for the materials genome initiative. MRS Bulletin, 41(4), 326–337.

    Article  Google Scholar 

  • McDowell, D. L., & LeSar, R. A. (2016). The need for microstructure informatics in process–structure–property relations. MRS Bulletin, 41(8), 587–593.

    Article  Google Scholar 

  • McDowell, D. L., & Olson, G. (2008). Concurrent design of hierarchical materials and structures. In Scientific modeling and simulations (pp. 207–240). Springer.

    Google Scholar 

  • McDowell, D. L., Panchal, J., Choi, H.-J., Seepersad, C., Allen, J., & Mistree, F. (2009). Integrated design of multiscale, multifunctional materials and products. Butterworth-Heinemann.

    Google Scholar 

  • Mistree, F., Hughes, O. F., & Bras, B. (1993). Compromise decision support problem and the adaptive linear programming algorithm. Progress in Astronautics and Aeronautics, 150, 251–251.

    Google Scholar 

  • Mullins, J., & Mahadevan, S. (2016). Bayesian uncertainty integration for model calibration, validation, and prediction. Journal of Verification, Validation and Uncertainty Quantification, 1(1), 011006.

    Article  Google Scholar 

  • Nellippallil, A. B., Song, K. N., Goh, C.-H., Zagade, P., Gautham, B., Allen, J. K., & Mistree, F. (2016). A goal oriented, sequential process design of a multi-stage hot rod rolling system. ASME Design Automation Conference, Paper Number: DETC2016-59402.

    Google Scholar 

  • Nellippallil, A. B., Rangaraj, V., Allen, J. K., Mistree, F., Gautham, B., & Singh, A. K. (2017a). A decision-based design method to explore the solution space for microstructure after cooling stage to realize the end mechanical properties of hot rolled product. In Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017). Springer.

    Google Scholar 

  • Nellippallil, A. B., Rangaraj, V., Gautham, B., Singh, A. K., Allen, J. K., & Mistree, F. (2017b). A goal-oriented, inverse decision-based design method to achieve the vertical and horizontal integration of models in a hot rod rolling process chain. ASME Design Automation Conference, Paper Number: DETC2017‐67570.

    Google Scholar 

  • Nellippallil, A. B., Shukla, R., Ardham, S., Goh, C.-H., Allen, J. K., & Mistree, F. (2017c). Exploration of solution space to study thermo-mechanical behavior of AA5083 Al-alloy during hot rolling process. ASME Design Automation Conference, Paper Number: DETC2017‐68173.

    Google Scholar 

  • Nellippallil, A. B., Song, K. N., Goh, C.-H., Zagade, P., Gautham, B., Allen, J. K., Mistree, F. (2017d). A goal-oriented, sequential, inverse design method for the horizontal integration of a multistage hot rod rolling system. Journal of Mechanical Design, 139(3), 031403.

    Google Scholar 

  • Nellippallil, A. B., Mohan, P., Allen, J. K., & Mistree, F. (2018a). Robust concept exploration of materials, products and associated manufacturing processes. ASME Design Automation Conference, Paper Number: DETC2018-85913.

    Google Scholar 

  • Nellippallil, A. B., Rangaraj, V., Gautham, B., Singh, A. K., Allen, J. K., & Mistree, F. (2018b). An inverse, decision-based design method for integrated design exploration of materials, products, and manufacturing processes. Journal of Mechanical Design, 140(11), 111403-1-111403-17.

    Google Scholar 

  • Nellippallil, A. B., Mohan, P., Allen, J. K., & Mistree, F. (2019). Inverse thermo-mechanical processing (ITMP) design of a steel rod during hot rolling process. ASME Design Automation Conference, Paper Number: IDETC2019-97390.

    Google Scholar 

  • Nellippallil, A. B., Mohan, P., Allen, J. K., & Mistree, F. (2020). An inverse, decision-based design method for robust concept exploration. Journal of Mechanical Design, https://doi.org/10.1115/1.4045877.

  • Olson, G. B. (1997). Computational design of hierarchically structured materials. Science, 277(5330), 1237–1242.

    Article  Google Scholar 

  • Olson, G. B. (2000). Designing a new material world. Science, 288(5468), 993–998.

    Article  Google Scholar 

  • Panchal, J. H. (2005). A framework for simulation-based integrated design of multiscale products and design processes, Ph.D. Dissertation, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology.

    Google Scholar 

  • Panchal, J. H., Choi, H.-J., Shephard, J., Allen, J. K., McDowell, D. L., & Mistree, F. (2005). A strategy for simulation-based multiscale, multi-functional products and associated design processes. ASME Design Automation Conference, Paper Number: DETC2005-85316.

    Google Scholar 

  • Panchal, J. H., Kalidindi, S. R., & McDowell, D. L. (2013). Key computational modeling issues in integrated computational materials engineering. Computer-Aided Design, 45(1), 4–25.

    Article  Google Scholar 

  • Pedersen, K., Emblemsvag, J., Bailey, R., Allen, J., & Mistree, F. (2000). The ‘Validation Square’–Validating design methods. In ASME Design Theory and Methodology Conference, New York: ASME.

    Google Scholar 

  • Pollock, T. M., Allison J. E., et al. (2008). Integrated computational materials engineering: A transformational discipline for improved competitiveness and national security. National Academies Press.

    Google Scholar 

  • Rajan, K. (2005). Materials informatics. Materials Today, 8(10), 38–45.

    Article  Google Scholar 

  • Rajan, K. (2013). Informatics for materials science and engineering: Data-driven discovery for accelerated experimentation and application. Butterworth-Heinemann.

    Google Scholar 

  • Rasmussen, C. E. (2003) Gaussian processes in machine learning. In Summer school on machine learning. Springer.

    Google Scholar 

  • Rasmussen, C. E., & Williams, C. (2006). Gaussian processes for machine learning, (vol. 1, 39, pp. 40–43). MIT Press.

    Google Scholar 

  • Sargent, R. G. (2009). Verification and validation of simulation models. In Proceedings of the 2009 Winter Simulation Conference (WSC). IEEE.

    Google Scholar 

  • Seepersad, C. C., Allen, J. K., McDowell, D. L., & Mistree, F. (2005). Robust design of cellular materials with topological and dimensional imperfections. ASME Design Automation Conference, Paper Number: DETC2005-85061.

    Google Scholar 

  • Seepersad, C. C., Pedersen, K., Emblemsvåg, J., Bailey, R., Allen, J. K., & Mistree, F. (2006). “The validation square: How does one verify and validate a design method? (pp. 303–314). New York: ASME Press.

    Google Scholar 

  • Shahan, D. W., & Seepersad, C. C. (2012). Bayesian network classifiers for set-based collaborative design. Journal of Mechanical Design, 134(7), 071001.

    Article  Google Scholar 

  • Shukla, R., Kulkarni, N. H., Gautham, B., Singh, A. K., Mistree, F., Allen, J. K., et al. (2015). Design Exploration of Engineered Materials, Products, and Associated Manufacturing Processes. JOM Journal of the Minerals Metals and Materials Society, 67(1), 94–107.

    Article  Google Scholar 

  • Sigmund, O. (1994). Materials with prescribed constitutive parameters: an inverse homogenization problem. International Journal of Solids and Structures, 31(17), 2313–2329.

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund, O. (1995). Tailoring materials with prescribed elastic properties. Mechanics of Materials, 20(4), 351–368.

    Article  Google Scholar 

  • Sigmund, O., & Torquato, S. (1997). Design of materials with extreme thermal expansion using a three-phase topology optimization method. Journal of the Mechanics and Physics of Solids, 45(6), 1037–1067.

    Article  MathSciNet  Google Scholar 

  • Simpson, T., Mistree, F., Korte, J., & Mauery, T. (1998). Comparison of response surface and kriging models for multidisciplinary design optimization. In 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization.

    Google Scholar 

  • Sinha, A. (2011). Uncertainty Management in Design of Multiscale Systems. The George W. Woodruff School of Mechanical Engineering. Atlanta, GA, Georgia Institute of Technology. M. S. Thesis.

    Google Scholar 

  • Solomou, A., Zhao, G., Boluki, S., Joy, J. K., Qian, X., Karaman, I., Arróyave, R., & Lagoudas, D. C. (2018). Multi-objective bayesian materials discovery: Application on the discovery of precipitation strengthened niti shape memory alloys through micromechanical modeling. Materials & Design, 160, pp. 810–827.

    Google Scholar 

  • Subbarayan, G., & Raj, R. (1999). A methodology for integrating materials science with system engineering. Materials and Design, 20(1), 1–12.

    Article  Google Scholar 

  • Tennyson, G., Shukla, R., Mangal, S., Sachi, S., & Singh, A. K., (2015). ICME for process scale-up: Importance of vertical and horizontal integration of models. In Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME). Wiley.

    Google Scholar 

  • Xiao, A. (2003). Collaborative multidisciplinary decision making in distributed environment, Ph.D. Dissertation, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology.

    Google Scholar 

  • Xue, D., Balachandran, P. V., Hogden, J., Theiler, J., Xue, D., & Lookman, T. (2016). Accelerated search for materials with targeted properties by adaptive design. Nature Communications, 7(1), 1–9.

    Google Scholar 

  • Yan, F., Chan, Y.-C., Saboo, A., Shah, J., Olson, G. B., & Chen, W. (2018). Data-driven prediction of mechanical properties in support of rapid certification of additively manufactured alloys. Computer Modeling in Engineering & Sciences, 117(3), 343–366.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Balu Nellippallil .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nellippallil, A.B., Allen, J.K., Gautham, B.P., Singh, A.K., Mistree, F. (2020). Integrated Design of Materials, Products, and Manufacturing ProcessesCurrent Trends and Practices. In: Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45324-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45324-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45323-7

  • Online ISBN: 978-3-030-45324-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics