Skip to main content

Study on Preparation of Selective Nickel Ion Exchange Membrane by Ion-Imprinting Technique

  • Conference paper
  • First Online:
Sustainable Development of Water and Environment (ICSDWE 2020)

Abstract

This study applied an ion-imprinting technique to create nickel recognition sites on a cation exchange membrane which can solely allow nickel ions to pass through. Such nickel selective membrane can effectively separate specific metal ions, that is, it can avoid other heavy metals with similar molecular weight and the same valence to penetrate the membrane. In order to separate Ni2+ ions from wastewater containing Ni2+ and Cu2+, an electrodialytical system is used with the nickel selective membrane. Experimental results show that the adsorption efficiency of self-manufacturing membrane increased with nickel ions concentration, the 90% removal efficiency can be obtained. The highest adsorption capacity has reached around 63 mg/g at the nickel concentration of 400 mg/L, which is significantly higher than the commercial cation exchange membrane. Meanwhile, the prepared nickel selective membrane majorly adsorbed the nickel ions when copper and nickel ions are presented in the wastewater simultaneously. The separation and recovery efficiency of nickel ions can rapidly reach around 50% and 70%, respectively, by the electrodialytical system with such selective membrane operate data voltage of 50 V for 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chen Y, Zhao X, Guan W, Cao D, Guo T, Zhang X, Wang Y (2017) Photoelectrocatalytic oxidation of metal-EDTA and recovery of metals by electrode position with a rotating cathode. Chem Eng J 324:74–82

    Article  Google Scholar 

  • Chen Q, Yao Y, Li X, Lu J, Zhou J, Huang Z (2018) Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J Water Process Eng 26:289–300

    Article  Google Scholar 

  • Chojnacka K, Mikulewicz M (2019) Green analytical methods of metals determination in biosorption studies. Trends Anal Chem 116:254–265

    Article  Google Scholar 

  • Luiz A, McClure DD, Lim K, Coster HGL, Barton GW, Kavanagh JM (2019) Towards a model for the electrodialysis of bio-refinery streams. J Membr Sci 573:320–332

    Article  Google Scholar 

  • Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264(3):268–288

    Article  Google Scholar 

  • Vatanpour V, Madaeni SS, Zinadini S, Rajabi HR (2011) Development of ion imprinted technique for designing nickel ion selective membrane. J Membr Sci 373(1–2):36–42

    Article  Google Scholar 

  • Wang Z, Kong D, Qiao N, Wang N, Wang Q, Liu H, Zhou Z, Ren Z (2018) Facile preparation of novel layer-by-layer surface ion-imprinted composite membrane for separation of Cu2+ from aqueous solution. Appl Surf Sci 457:981–990

    Article  Google Scholar 

  • Wang R, Ng DHL, Liu S (2019) Recovery of nickel ions from wastewater by precipitation approach using silica xerogel. J Hazard Mater 380

    Google Scholar 

  • Ye ZL, Ghyselbrecht K, Monballiu A, Pinoy L, Meesschaert B (2019) Fractionating various nutrient ions for resource recovery from swine wastewater using simultaneous anionic and cationic selective-electrodialysis. Water Res 160:424–434

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan-Yi Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, JH., Shen, SY., Lin, CY., Chou, LH., Li, YC., Yen, HC. (2020). Study on Preparation of Selective Nickel Ion Exchange Membrane by Ion-Imprinting Technique. In: Jeon, HY. (eds) Sustainable Development of Water and Environment. ICSDWE 2020. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-45263-6_6

Download citation

Publish with us

Policies and ethics