Skip to main content

Blood Lead and Cadmium Levels of E-waste Dismantling Workers, Buriram Province, Thailand

  • Conference paper
  • First Online:
Book cover Sustainable Development of Water and Environment (ICSDWE 2020)

Abstract

E-waste dismantling activities can release heavy metals into the environment. Heavy metals cause environmental problems and adverse health effects, especially exposure to lead (Pb) and cadmium (Cd) of e-waste dismantling workers. The health risk of lead and cadmium from e-waste dismantling was evaluated. Blood lead and cadmium levels, which serve as biomarkers, of e-waste dismantling and non-e-waste dismantling workers in the local community (Buriram province, Thailand) were determined using inductively coupled plasma mass spectrometry (ICP-MS). These levels were then compared using paired samples Mann-whitney test (U-test) with significance level at p < 0.05. A total of 60 subjects from Daeng Yai Sub-district, Ban Mai Chaiyapot district were selected and divided into two groups, comprising 30 e-waste dismantling workers and 30 non-e-waste workers who live in villages not involved in e-waste dismantling. The results showed that the mean blood lead level of e-waste workers (6.61 ± 3.07 µg/dl) was significantly higher than that of non-e-waste workers (2.73 ± 0.49 µg/dl) with p < 0.05, while the mean blood cadmium level of e-waste workers was slightly lower than that of non-e-waste workers with values of 1.00 ± 0.33 µg/l and 1.17 ± 0.39 µg/l, respectively. These results suggest that e-waste dismantling workers have a higher risk of lead exposure from e-waste dismantling activity and therefore workers should be recommended to use personal protective equipment during dismantling activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agency for Toxic Substances and Disease Registry (1999) Toxicological Profile for Lead (online). Available from: https://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=96&tid=22

  • Atlanta (2012) Agency for toxic substances and disease registry. Public Health Statement for Cadmium (online). Available from http://www.atsdr.cdc.gov/phs/phs.asp?id=46&tid=15#bookmark03

  • Awasthi AK, Zeng X, Li J (2016) Relationship between e-waste recycling and human health risk in India: a critical review. Environ Sci Pollut Res 23(18):1–24

    Google Scholar 

  • Barbosa F, Tanus-Santos E, Gerlach F, Parsons J (2015) A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect 113:1669–1674

    Article  Google Scholar 

  • Cayumil R, Khanna R, Rajarao M, Ikram-ul-Haq PS, Mukherjee, Sahajwalla V (2016) Environmental impact of processing electronic waste—key issues and challenges. In: Florin-Constantin Mihai (ed) E-waste in transition—from pollution to resource. InTech, pp 9–35

    Google Scholar 

  • Centers for Disease Control and Prevention (2004) Laboratory Procedure Manual (online). https://www.cdc.gov/nchs/data/nhanes/nhanes_09_10/pbcd_f_met.pdf

  • Department of Disease Control, Ministry of Public Health (2016) Thai Biological Exposure Indices: Thai BEIs (online). http://pr.ddc.moph.go.th/pakard/showimg4.php?id=1334

  • Dix-Cooper L, Kosatsky T (2018) Blood mercury, lead and cadmium levels and determinants of exposure among newcomer South and East Asian women of reproductive age living in Vancouver, Canada. Sci Total Environ 619–620:1409–1419

    Google Scholar 

  • Grant K, Goldizen F, Sly P, Brune M, Neira M, Berg M, Norman R (2013) Health consequences of exposure to e-waste: a systematic review. Lancet Glob Health 350–361

    Google Scholar 

  • Haines A, Murray J (2012) Human biomonitoring of environmental chemicals-early results of the 2007–2009 Canadian Health Measures Survey for males and females. Int J Hyg Environ Health 215:133–137

    Article  Google Scholar 

  • Herat S (2008) Recycling of cathode ray tubes (CRTs) in electronic waste. Clean-Soil Air Water 36:19–24

    Article  Google Scholar 

  • Junge W, Wilke B, Halabi A, Klein G (2004) Determination of reference intervals for serum creatinine, creatinine excretion and creatinine clearance with an enzymatic and a modified Jaffé method. Clin Chim Acta 344(1–2):137–148

    Article  Google Scholar 

  • Keil D, Mcmillin AG (2011) Testing for toxic elements: a focus on arsenic, cadmium, lead, and mercury. Labmedicine 42(12):735–742

    Google Scholar 

  • Król S, Zabiegała B, Namieśnik J (2013) Human hair as a biomarker of human exposure to persistent organic pollutants (POPs). TrAC Trends Anal Chem 47:84–98

    Article  Google Scholar 

  • Mittal A, Malviya M, John J (2011) High blood lead levels in e-waste recyclers. Epidemiology 22:293

    Article  Google Scholar 

  • Niu RX, Wang ZS, Song QB, Li JH (2012) LCA of scrap CRT display at various scenarios of treatment. Procedia Environ Sci 16:576–584

    Article  Google Scholar 

  • Oguri T, Suzuki G, Matsukami H, Uchida N, Tue NM, Viet PH, Takigami H (2018) Exposure assessment of heavy metals in an e-waste processing area in northern Vietnam. Sci Total Environ 621(1):1115–1123

    Article  Google Scholar 

  • Orlins S, Guan D (2016) China’s toxic informal e-waste recycling: local approaches to a global environmental problem. J Clean Prod 114:71–80

    Article  Google Scholar 

  • Patrick L (2006) Lead toxicity, a review of the literature. Part 1: exposure, evaluation, and treatment. Alternative medicine review. J Clin Ther 11:2–22

    Google Scholar 

  • Puangprasert S, Prueksasit T (2019) Health risk assessment of airborne Cd, Cu, Ni and Pb for electronic waste dismantling workers in Buriram Province, Thailand. J Environ Manage 252

    Google Scholar 

  • Ramesh BB, Parande A K, Basha CA (2007) Electrical and electronic waste: a global environmental problem. Waste Manage Res 25:307–318

    Google Scholar 

  • Rao MN, Sultana R, Kota SH, Shah A, Davergave N (2017) Solid and hazardous waste management: science and engineering, 1st edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Sakai T (2000) Biomarkers of lead exposure. Ind Health 38:127–142

    Article  Google Scholar 

  • Schecter A, Kincaid J, Quynh T, Lanceta J, Tran T, Crandall R, Shropshire W, Birnbaum S (2017) Biomonitoring of metals, polybrominated diphenyl ethers, polychlorinated biphenyls, persistent pesticides in Vietnamese female electronic waste recyclers. J Occup Environ Med 60:191–197

    Article  Google Scholar 

  • Sobus JR, Pleil JD, McClean MD, Herrick RF, Rappaport SM (2010) Biomarker variance component estimation for exposure surrogate selection and toxicokinetic inference. Toxicol Lett 199:247–253

    Article  Google Scholar 

  • Srigboh R, Basu N, Stephens J, Asampong E, Perkins M, Neitzel R, Fobil J (2016) Multiple elemental exposures amongst workers at the Agbogbloshie electronic waste (e-waste) site in Ghana. Chemosphere 164:68–74

    Article  Google Scholar 

  • US EPA (2008) Electronics waste management in the United States: Approach 1. EPA530-R-08-009. Office of Solid Waste, U.S. EPA, Washington, DC

    Google Scholar 

  • US EPA (2009) Cadmium Compounds (online). U.S. Environmental Protection Agency, Washington, DC. http://www.epa.gov/ttn/atw/hlthef/cadmium.html

  • Wittsiepe J, Feldt T, Till H, Burchard G, Wilhelm M, Fobil J (2017) Pilot study on the internal exposure to heavy metals of informal-level electronic waste workers in Agbogbloshie, Accra, Ghana. Environ Sci Pollut Res. 24:3097–3107

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Research Program of Municipal Solid Waste and Hazardous Waste Management, Center of Excellence on Hazardous Substance Management (HSM), the S&T Postgraduate Education and Research Development Office (PERDO), the Office of Higher Education Commission (OHEC). Moreover, the authors are grateful to all of the participants for the voluntary allowance to collect blood samples and supporting information. Finally, the authors appreciate the continued support of Ban Pao Pattana Health Promoting Hospital, Dang Yai sub-district, Ban Mai Chaiyapot district, and Ban Pao Health Promoting Hospital, Ban Pao sub-district, Putthisong district in Buriram province, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tassanee Prueksasit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sirichai, T., Prueksasit, T., Sangsuthum, S. (2020). Blood Lead and Cadmium Levels of E-waste Dismantling Workers, Buriram Province, Thailand. In: Jeon, HY. (eds) Sustainable Development of Water and Environment. ICSDWE 2020. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-45263-6_34

Download citation

Publish with us

Policies and ethics