Skip to main content

Real-Time Capacity Management and Patient Flow Optimization in Hospitals Using AI Methods

  • Chapter
  • First Online:

Abstract

Hospital systems are under constant pressure to provide quality care despite limited resources. However, traditional capacity management in hospitals is often not effective enough. One reason for this is the variability and uncertainty in the healthcare field that has to be managed. Another reason is the observation that hospitals are open loop systems, meaning they do not use feedback to determine if their output has achieved the desired goal of input. They do not observe the output of their processes controlled by them and use this information to take action. In hospital systems, there are few efficient planning systems or decision support systems to help administrators take decisions. This is different in other industries, where complex planning systems with the help of Artificial Intelligence, or AI as it is referred to, are often being used. This research chapter analyses the issues and possibilities for hospitals to incorporate AI into their capacity management and become intelligent systems in which operations and processes are regulated by feedback (closed loop system) and, more specifically, discusses the recent research of the authors on this topic, where Artificial Intelligent (Multi-Agent System) methods in combination with real-time coordination were described and implemented in the Aravind Eye Hospital (AEH) in India.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. X. M. Huang, Patient attitude towards waiting in an outpatient clinic and its applications. Health Services Management Research: An official Journal of the Association of University Programs in Health Administration/HSMC, AUPHA, 1994. 7(1): p. 2–8.

    Article  Google Scholar 

  2. D. I. Pillay, R. J. Ghazali, N. H. Manaf, A. H. Abdullah, A. A. Bakar, F. Salikin, et al., Hospital waiting time: the forgotten premise of healthcare service delivery? Int J Health Care Qual Assur, 2011. 24(7): p. 506–22.

    Article  Google Scholar 

  3. Zhu, Z., Heng, B. H., and Teow, K. L. Analysis of factors causing long patient waiting time and clinic overtime in outpatient clinics. Journal of medical systems, 2012, 36(2), 707–713.

    Article  Google Scholar 

  4. Ivan B. Vermeulen, Sander M. Bohte, Sylvia G. Elkhuizen, Han Lameris, Piet J.M. Bakker and Han La Poutre, Adaptive resource allocation for efficient patient scheduling. Artificial Intelligence in Medicine, 2009. 46(1): p. 67–80.

    Article  Google Scholar 

  5. Paul R. Harper, A Framework for Operational Modelling of Hospital Resources. Health Care Management Science, 2002. 5(3): p. 165–173.

    Article  Google Scholar 

  6. K V Ramani, Dileep V Mavalankar and Dipti Govil, Strategic Issues and Challenges in Health Management. 2008, India: SAGE Publications. 227.

    Google Scholar 

  7. C.K. Prahalad, The Fortune at the Bottom of the Pyramid, Revised and Updated 5th Anniversary Edition: Eradicating Poverty Through Profits.’ 2009, New Jersey: Wharton School Publishing. 432.

    Google Scholar 

  8. Activity-Report, Aravind Eye Care System, 2014–15: Madurai. p. 76.

    Google Scholar 

  9. Larry Brilliant and Girija Brilliant, Aravind: Partner and Social Science Innovator (Innovations Case Discussion: Aravind Eye Care System). Innovations: Technology, Governance, Globalization, 2007. 2(4): p. 50–2.

    Article  Google Scholar 

  10. Mehta, P., and Shenoy, S. Infinite vision: how Aravind became the world’s greatest business case for compassion. 2011, Berrett-Koehler Publishers.

    Google Scholar 

  11. Dr. Bhupinder Chaudhary, Dr. Ashwin G. Modi and Dr. Kalyan Reddy, Right To Sight: A Management Case Study on Aravind Eye Hospitals ZENITH, International Journal of Multidisciplinary Research 2012. 2(1): p. 447–57.

    Google Scholar 

  12. V. K. Rangan and R.D. Thulasiraj, Making Sight Affordable (Innovations Case Narrative: The Aravind Eye Care System). Innovations: Technology, Governance, Globalization Fall, 2007. 2(4): p. 35–49.

    Article  Google Scholar 

  13. Michael Moesgaard Andersen and Flemming Poulfelt, Beyond Strategy: The Impact of Next Generation Companies, 2014, New York: Routledge.

    Google Scholar 

  14. G. Natchiar, R. D. Thulasiraj and R. Meenakshi Sundaram, Cataract surgery at Aravind Eye Hospitals: 1988–2008. Community Eye Health, 2008. 21(67): p. 40–2.

    Google Scholar 

  15. Jyoti R. Munavalli, Shyam Vasudeva Rao, A. Srinivasan, A. Srinivas and Frits Van Merode, The Optimization in Workflow Management: Ophthalmology. Journal of Health Management, 2016. 18(1): p. 21–30.

    Article  Google Scholar 

  16. T. B. T. Nguyen, A. I. Sivakumar and S. C. Graves, A network flow approach for tactical resource planning in outpatient clinics. Health Care Management Science, 2015. 18(2): p. 124–36.

    Article  Google Scholar 

  17. Cinnamon A. Dixon, Damien Punguyire, Melinda Mahabee-Gittens, Mona Ho and Christopher J. Lindsell, Patient flow analysis in resource-limited settings: a practical tutorial and case study. Global health, science and practice, 2015. 3(1): p. 126–134.

    Article  Google Scholar 

  18. J.M.H. Vissers, J.W.M Bertrand and G. de Vries, A framework for production control in health care organizations. Production Planning & Control: The Management of Operations, 2001. 12(6): p. 591–604.

    Google Scholar 

  19. Bruce D. Mansdorf, Allocation of Resources for Ambulatory Care -A Staffing Model for Outpatient Clinics. Public Health Reports, 1975. 90(5): p. 393–401.

    Google Scholar 

  20. Lynne C. Yurko, Tammy L. Coffee, Jane Fusilero, Charles J. Yowler, Christopher P. Brandt and Richard B. Fratianne, Management of an Inpatient-Outpatient Clinic: An Eight-Year Review. Journal of Burn Care& Research, 2001. 22(3): p. 250–4.

    Google Scholar 

  21. MM Rouppe van der Voort, FG van Merode and BH Berden, Making sense of delays in outpatient specialty care: A system perspective. Health Policy, 2010. 97(1): p. 44–52.

    Google Scholar 

  22. Godefridus G. van Merode, Siebren Groothuis and Arie Hasman, Enterprise resource planning for hospitals. International Journal of Medical Informatics, 2004. 73(6): p. 493–501.

    Article  Google Scholar 

  23. Sara A. Kreindler, The three paradoxes of patient flow: an explanatory case study. BMC Health Services Research, 2017. 17(1): p. 481.

    Article  Google Scholar 

  24. Lovett, P. B., Illg, M. L., & Sweeney, B. E. (2016). A successful model for a comprehensive patient flow management center at an academic health system. American Journal of Medical Quality, 31(3), 246–255.

    Article  Google Scholar 

  25. Md Saiful Islam, Md Mahmudul Hasan, Xiaoyi Wang, Hayley D. Germack and Md Noor-E-Alam, A Systematic Review on Healthcare Analytics: Application and Theoretical Perspective of Data Mining. Healthcare (Basel, Switzerland), 2018. 6(2): p. 54.

    Google Scholar 

  26. Daniel M. Bean, Clive Stringer, Neeraj Beeknoo, James Teo and Richard J. B. Dobson, Network analysis of patient flow in two UK acute care hospitals identifies key sub-networks for A&E performance. PloS one, 2017. 12(10): p. e0185912-e0185912.

    Article  Google Scholar 

  27. Boersma, H. J., Leung, T. I., Vanwersch, R., Heeren, E., & van Merode, G. G. Optimizing Care Processes with Operational Excellence & Process Mining. In Fundamentals of Clinical Data Science, 2019, pp. 181–192. Springer, Cham.

    Google Scholar 

  28. Rasch, R., Kott, A., and Forbus, K. D.. Incorporating AI into military decision making: an experiment. IEEE Intelligent Systems, 2003, 18(4), 18–26.

    Article  Google Scholar 

  29. B. Rodríguez-Somoza, R. Galán and E. A. Puente, Production Scheduling Using AI Techniques. IFAC Proceedings Volumes, 1990. 23(3): p. 387–392.

    Article  Google Scholar 

  30. J. Mula, R. Poler, J. P. García-Sabater and F. C. Lario, Models for production planning under uncertainty: A review. International Journal of Production Economics, 2006. 103(1): p. 271–285.

    Article  Google Scholar 

  31. E. W. T. Ngai, S. Peng, Paul Alexander and Karen K. L. Moon, Decision support and intelligent systems in the textile and apparel supply chain: An academic review of research articles. Expert Systems with Applications, 2014. 41(1): p. 81–91.

    Article  Google Scholar 

  32. Hanning Chen, Yunlong Zhu and Kunyuan Hu, Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning. Applied Soft Computing, 2010. 10(2): p. 539–547.

    Article  Google Scholar 

  33. Paul Bogg, Ghassan Beydoun and Graham Low, When to Use a Multi-Agent Systems?, In Pacific Rim International Conference on Multi-Agents 2008, Springer Berlin Heidelberg. p. 98–108.

    Google Scholar 

  34. Hanen Jemal, Zied Kechaou, Mounir Ben Ayed and Adel M. Alimi, A Multi Agent System for Hospital Organization. International Journal of Machine Learning and Computing, 2015. 5(1): p. 51–6.

    Article  Google Scholar 

  35. David Isern and Antonio Moreno, A Systematic Literature Review of Agents Applied in Healthcare. Journal of Medical Systems, 2015. 40(2): p. 43.

    Article  Google Scholar 

  36. R. Schmidt, S. Geisler and C. Spreckelsen, Decision support for hospital bed management using adaptable individual length of stay estimations and shared resources. BMC Med Inform Decision Making, 2013. 13(3).

    Google Scholar 

  37. Paulussen, T. O., Zöller, A., Heinzl, A., Braubach, L., Pokahr, A., & Lamersdorf W., Patient scheduling under uncertainty. In Symposium on Applied Computing: Proceedings of the 2004 ACM symposium on Applied computing, 2004, Vol. 14, No. 17, pp. 309–310.

    Google Scholar 

  38. Nieves, J. C., Lindgren, H., & Cortés, U. Agent-based reasoning in medical planning and diagnosis combining multiple strategies. International Journal on Artificial Intelligence Tools, 2014 23(01), 1440004.

    Article  Google Scholar 

  39. Paulussen, T. O., Zöller, A., Heinzl, A., Pokahr, A., Braubach, L., & Lamersdorf, W. Dynamic patient scheduling in hospitals. Coordination and Agent Technology in Value Networks. GITO, Berlin, 2004, 149–174.

    Google Scholar 

  40. Paulussen, T. O., Jennings, N. R., Decker, K. S., & Heinzl, A. Distributed patient scheduling in hospitals. In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03). 2003. Morgan Kaufmann.

    Google Scholar 

  41. U. Deshpande, A. Gupta and A. Basu, A distributed hospital resource scheduling system using a multi-agent framework. IETE Technical Review, 2001. 18(4): p. 263–75.

    Article  Google Scholar 

  42. Stiglic, G., & Kokol, P. Intelligent patient and nurse scheduling in ambulatory health care centers. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2006, pp. 5475–5478.

    Google Scholar 

  43. Zöller, A., Braubach, L., Pokahr, A., Rothlauf, F., Paulussen, T. O., Lamersdorf, W., & Heinzl, A. Evaluation of a Multi-Agent System for Hospital Patient Scheduling. ITSSA, 2006 1(4), 375–380.

    Google Scholar 

  44. R. Schumann, A. D. Lattner and I. J. Timm, Management-by-Exception - A Modern Approach to Managing Self-Organizing Systems. Communications of SIWN, 2008. 4: p. 168–172.

    Google Scholar 

  45. S. Agatonovic-Kustrin and R. Beresford, Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis, 2000. 22(5): p. 717–727.

    Article  Google Scholar 

  46. Schmidhuber J., Deep learning in neural networks: An overview. Neural Networks, 2015. 61: p. 85–117.

    Article  Google Scholar 

  47. Gül, M., & Güneri, A. F, Forecasting Patient Length of Stay in an Emergency Department by Artificial Neural Networks. Journal of Aeronautics and Space Technologies, 2015. 8(2): p. 43–48.

    Google Scholar 

  48. Chang, W. J., & Chang, Y. H., Design of a Patient-Centered Appointment Scheduling with Artificial Neural Network and Discrete Event Simulation. Journal of Service Science and Management, 2018. 2018( 11): p. 71–82.

    Article  Google Scholar 

  49. Tsai, P. F. J., Chen, P. C., Chen, Y. Y., Song, H. Y., Lin, H. M., Lin, F. M., & Huang, Q. P. Length of hospital stay prediction at the admission stage for cardiology patients using artificial neural network. Journal of healthcare engineering, 2016, p. 11.

    Google Scholar 

  50. G. Hao, Kin Keung Lai and Manzhi Tan, A Neural Network Application in Personnel Scheduling. Vol. 128. 2004. 65–90.

    Google Scholar 

  51. Ali Guneri and Alev Gumus, The Usage of Artificial Neural Networks For Finite Capacity Planning. Vol. 15. 2008. 16–25.

    Google Scholar 

  52. El Adoly, A. A., Gheith, M., & Fors M. N., A new formulation and solution for the nurse scheduling problem: A case study in Egypt. Alexandria Engineering Journal, 2018. 57(4): p. 2289–2298.

    Article  Google Scholar 

  53. Raghupathi, V., & Raghupathi, W., A Neural Network Analysis of Treatment Quality and Efficiency of Hospitals. J Health Med Informat, 2015.

    Google Scholar 

  54. Clermont Gilles, Derek C. Angus, Stephen M. DiRusso, Martin Griffin, Linde-Zwirble and Walter T, Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression models. Critical Care Medicine, 2001. 29(2): p. 291–296.

    Article  Google Scholar 

  55. D. A. Clifton, K. E. Niehaus, P. Charlton and G. W. Colopy, Health Informatics via Machine Learning for the Clinical Management of Patients. Yearbook of medical informatics, 2015. 10(1): p. 38–43.

    Google Scholar 

  56. Carson Lam, Darvin Yi, Margaret Guo and Tony Lindsey, Automated Detection of Diabetic Retinopathy using Deep Learning. AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science, 2018. 2017: p. 147–155.

    Google Scholar 

  57. Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I., Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 2015. 13: p. 8–17.

    Article  Google Scholar 

  58. Kanaga, E. G. M., Valarmathi, M. L., & Rose, J. D., Coordinated Multi-Agents Based Patient Scheduling Using Genetic Algorithm. ACEEE Int. J. on Communication, 2010. 03(02).

    Google Scholar 

  59. Du, G., Jiang, Z., Yao, Y., & Diao, X., Clinical Pathways Scheduling Using Hybrid Genetic Algorithm. Journal of Medical Systems, 2013. 37: p. 9945.

    Article  Google Scholar 

  60. Dorigo, M., & Gambardella, L. M., Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1997. 1(1): p. 53–66.

    Article  Google Scholar 

  61. Bean, N., & Costa, A., An analytic modelling approach for network routing algorithms that use “ant-like” mobile agents. Elsevier Computer Networks, 2005. 49(2): p. 243–68.

    Article  Google Scholar 

  62. Luca Maria Gambardella and Marco Dorigo, An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem. INFORMS Journal on Computing, 2000. 12(3): p. 237–55.

    Google Scholar 

  63. R. Dybowski, V. Gant, P. Weller and R. Chang, Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. The Lancet, 1996. 347(9009): p. 1146–1150.

    Article  Google Scholar 

  64. Majid Noor and Vinay Narwal, Machine Learning Approaches in Cancer Detection and Diagnosis: Mini Review. 2017

    Google Scholar 

  65. Jyoti R Munavalli, Shyam Vasudeva Rao, Aravind Srinivasan and GG van Merode, Integral patient scheduling in outpatient clinics under demand uncertainty to minimize patient waiting times. Health Informatics Journal, 2019. 0(0): p. 1460458219832044.

    Google Scholar 

  66. J.K Liker, The Toyota Way: 14 Management Principles from the World’s Greatest Manufacturer. 2004, New York: McGraw-Hill. 330.

    Google Scholar 

  67. Wallace J. Hopp and Mark L. Spearman, Factory Physics-Foundations of Manufacturing Management. 2001, Irwin: McGraw-Hill. 698.

    Google Scholar 

  68. M. Eswaramoorthi, G. R. Kathiresan, T. J. Jayasudhan, P. S. S. Prasad and P. V. Mohanram, Flow index based line balancing: a tool to improve the leanness of assembly line design. International Journal of Production Research, 2012. 50(12): p. 3345–58.

    Article  Google Scholar 

  69. JamesMac Gregor Smith and Baris Tan, Handbook of Stochastic Models and Analysis of Manufacturing System Operations. International Series in Operations Research and Management Science. Vol. 192. 2013, New York: Springer-Verlag 373.

    Google Scholar 

  70. Jyoti R. Munavalli, Shyam Vasudeva Rao, Aravind Srinivasan, Usha Manjunath and G. G. van Merode, A Robust Predictive Resource Planning under Demand Uncertainty to Improve Waiting Times in Outpatient Clinics. Journal of Health Management, 2017. 19(4): p. 1–21.

    Google Scholar 

  71. Jianxing He, Sally L. Baxter, Jie Xu, Jiming Xu, Xingtao Zhou and Kang Zhang, The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 2019. 25(1): p. 30–36.

    Article  Google Scholar 

  72. Jyoti R Munavalli, Shyam Vasudeva Rao, A. Srinivasan and G. G van Merode, An Intelligent Real-Time Scheduler for Out-Patient Clinics: A Multi-Agent System Model. Health Informatics Journal, 2020. http://dx.doi.org/10.1177/1460458220905380.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti R. Munavalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munavalli, J.R., Boersma, H.J., Rao, S.V., van Merode, G.G. (2021). Real-Time Capacity Management and Patient Flow Optimization in Hospitals Using AI Methods. In: Masmoudi, M., Jarboui, B., Siarry, P. (eds) Artificial Intelligence and Data Mining in Healthcare. Springer, Cham. https://doi.org/10.1007/978-3-030-45240-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45240-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45239-1

  • Online ISBN: 978-3-030-45240-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics