Skip to main content

Dynamic Simulation of Mechanical Fluid Separation in Solid Bowl Centrifuges

  • Chapter
  • First Online:
Dynamic Flowsheet Simulation of Solids Processes

Abstract

Solid bowl centrifuges are used in a wide range of applications in the process industry. The aim is to separate the individual phases of a liquid/liquid, liquid/solid or liquid/liquid/solid system. The design of solid bowl centrifuges is based on the Σ-theory, which does not describe the separation process with a sufficiently high accuracy. This process results in numbers of experiments with high time and cost expenditure. In addition, Σ-theory only describes the stationary state and therefore do not allow the calculation of start-up processes and load changes. This chapter shows a new real-time capable numerical algorithm, which ensures a high computational efficiency and is therefore suitable for dynamic simulations of the process behavior of solid bowl centrifuges. The introduction deals with the state of the art and the existing problems concerning of the design of solid bowl centrifuges. Subsequently, material functions representing the separation properties in solid bowl centrifuges are expounded. The developed material functions are the basis for the dynamic simulation of the process behavior in solid bowl centrifuges described below. The residence time and flow conditions of the apparatus significantly influence the process behavior for semi-batch and continuous processes. The last two sections present the dynamic modeling of continuously operating decanter and semi-batch tubular centrifuges. Example simulations and comparisons to experiments validate the developed dynamic models and demonstrate the applicability for dynamic simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A s :

Cross section of the sediment [m]

B sc :

Screw pitch [m]

C :

G-force [−]

D :

Flow number [−]

E(D):

Residence time distribution function [−]

E :

Separation efficiency [−]

F(D):

Residence time distribution [−]

G :

Grade efficiency [−]

h :

Hindered settling factor [−]

L cyl :

Length of the cylindrical drum [m]

L hel :

Length of the unrolled screw channel [m]

\(\dot{m}_{\text{s,i - 1}}\) :

Incoming mass flow of solids [kg s−1]

\(\dot{m}_{\text{s,i}}\) :

Outgoing mass flow of solids [kg s−1]

\(\dot{m}_{\text{s,sep}}\) :

Mass flow of separated solids [kg s−1]

N :

Total number of compartments [−]

n RZ :

Exponent Richardson and Zaki [−]

p 1 :

Empirical parameter for solids pressure function [Pa]

p 2 :

Empirical parameter for solids pressure function [−]

p s :

Solids pressure [Pa]

P :

Product loss [−]

q 3,i :

Mass density distribution [m−1]

Q :

Volumetric flow rate [m3 s−1]

r1, r2:

Empirical parameters for hindered settling function [−]

R d :

Radius of the bowl [m]

R m :

Mean radius of the bowl [m]

R max :

Maximum radius of the sediment [m]

R s :

Radius of sediment surface [m]

R w :

Radius of the weir [m]

Re p :

Particle Reynolds number [−]

Sdyn:

Normalized dynamic change [−]

t :

Time [s]

T :

Transport efficiency [−]

x :

Particle diameter [m]

\(x_{50,3}\) :

Mean particle diameter dependent on mass [m]

\(U\) :

Volumetric Filling level [−]

\(U_{\text{max}}\) :

Maximum volumetric filling level [−]

\(V_{\text{hel}}\) :

Volume of the screw channel in the cylindrical part of the decanter centrifuge [m3]

\(V\) :

Volume of a compartment in the sedimentation zone [m3]

\(V_{\text{sed}}\) :

Sediment volume [m3]

\(\beta\) :

Screw angle [rad]

\(\Delta l\) :

Length of a compartment [m]

\(\Delta n\) :

Differential speed between screw and drum [rpm]

\(\eta\) :

Dynamic viscosity [Pa s]

\(\phi\) :

Solids volume fraction [−]

\(\overline{\phi }_{c}\) :

Mean solids volume fraction of the sediment [−]

\(\rho\) :

Density [kg m−3]

\(\tau\) :

Mean residence time [s]

\(\omega\) :

Angular velocity [s−1]

0:

Initial position of the particle

i:

Compartment

l:

Liquid

N:

Total number of compartments

S:

Solid

sol:

Solution

tr:

Transport

CFD:

Computational fluid dynamics

CSTR:

Continuous stirred tank reactor

MPC:

Model predictive control

ODE:

Ordinary differential equation

PFR:

Plug flow reactor

PVC:

Polyvinylchloride

RTD:

Residence time distribution

SRF:

Single rotating frame

References

  1. Kowalczyk, B., Lagzi, I., Grzybowski, B.A.: Nanoseparations: strategies for size and/or shape-selective purification of nanoparticles. Curr. Opin. Colloid Interf. Sci. 16, 135–148 (2011). https://doi.org/10.1016/j.cocis.2011.01.004

    Article  CAS  Google Scholar 

  2. Kanarska, Y., Lomov, I., Antoun, T.: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique. Comput. Fluids 48, 16–29 (2011). https://doi.org/10.1016/j.compfluid.2011.03.010

    Article  Google Scholar 

  3. Ambler, C.M.: The evaluation of centrifuge performance. Chem. Eng. Prog. 48, 150–158 (1952)

    CAS  Google Scholar 

  4. Ambler, C.M.: The theory of scaling up laboratory data for the sedimentation type centrifuge. J. Microb. Biochem. Technol. 1, 185–205 (1959)

    Article  CAS  Google Scholar 

  5. Leung, W.W.-F.: Industrial Centrifugation Technology. McGraw-Hill, New York (1998)

    Google Scholar 

  6. Gleiss, M., Hammerich, S., Kespe, M., Nirschl, H.: Application of the dynamic flow sheet simulation concept to the solid-liquid separation: separation of stabilized slurries in continuous centrifuges. Chem. Eng. Sci. 163, 167–178 (2017)

    Article  CAS  Google Scholar 

  7. Konrath, M., Brenner, A., Dillner, E., Nirschl, H.: Centrifugal classification of ultrafine particles: Influence of suspension properties and operating parameters on classification sharpness. Sep. Purif. Technol. 156, 61–70 (2015)

    Article  CAS  Google Scholar 

  8. Romanni Fernández, X., Nirschl, H.: A numerical study of the impact of radial baffles in solid bowl centrifuges using computational fluid dynamics. Phys. Sep. Sci. Eng. (2010)

    Google Scholar 

  9. Romaní Fernández, X., Nirschl, H., Fernández, X.R., Nirschl, H.: Simulation of particles and sediment behaviour in centrifugal field by coupling CFD and DEM. Chem. Eng. Sci. 94, 7–19 (2013). https://doi.org/10.1016/j.ces.2013.02.039

    Article  CAS  Google Scholar 

  10. Hammerich, S., Gleiß, M., Nirschl, H.: Modeling and simulation of solid-bowl centrifuges as an aspect of the advancing digitization in solid-liquid separation. Chemie Ing. Tech. 91, 215–227 (2019)

    Article  CAS  Google Scholar 

  11. Hammerich, S., Gleiß, M., Kespe, M., Nirschl, H.: An efficient numerical approach for transient simulation of multiphase flow behavior in centrifuges. Chem. Eng. Technol. 41, 44–50 (2018)

    Article  CAS  Google Scholar 

  12. Stahl, W.: Fest-Flüssig-Trennung Band II: Industrie-Zentrifugen, Maschinen-und Verfahenstechnik. DRM Press, CH-Männedorf (2004)

    Google Scholar 

  13. Skinner, S.J., Studer, L.J., Dixon, D.R., Hillis, P., Rees, C.A., Wall, R.C., et al.: Quantification of wastewater sludge dewatering. Water Res. 82, 2–13 (2015). https://doi.org/10.1016/j.watres.2015.04.045

    Article  CAS  PubMed  Google Scholar 

  14. Lerche, D.: Dispersion stability and particle characterization by sedimentation kinetics in a centrifugal Field. J. Dispers. Sci. Technol. 23, 37–41 (2007)

    Google Scholar 

  15. Detloff, T., Sobisch, T., Lerche, D.: Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation. Powder Technol. 174, 50–55 (2007)

    Article  CAS  Google Scholar 

  16. Anlauf, H.: Recent developments in centrifuge technology. Sep. Purif. Technol. 58, 242–246 (2007). https://doi.org/10.1016/j.seppur.2007.05.012

    Article  CAS  Google Scholar 

  17. Beiser, M., Bickert, G., Scharfer, P.: Comparison of sedimentation behavior and structure analysis with regard to destabilization processes in suspensions. Chem. Eng. Technol. 27, 1084–1088 (2004). https://doi.org/10.1002/ceat.200403252

    Article  CAS  Google Scholar 

  18. Richardson, J.F., Zaki, W.N.: Sedimentation and fluidisation: Part I. Chem. Eng. Res. Des. 75, 82–100 (1997)

    Article  Google Scholar 

  19. Michaels, A., Bolger, J.: Settling rates and sediment volumes of flocculated kaolin suspensions. Ind. Eng. Chem. Fundam. 1, 24–33 (1962)

    Article  CAS  Google Scholar 

  20. Gleiß, M.: Dynamische Simulation der Mechanischen Flüssigkeitsabtrennung in Vollmantelzentrifugen, KIT Scientific Publishing (2018)

    Google Scholar 

  21. Stickland, A.D.: Solid-liquid separation in the water and wastewater industries. University of Melbourne (2005)

    Google Scholar 

  22. Spelter, L.E., Nirschl, H., Stickland, A.D., Scales, P.J.: Pseudo two-dimensional modeling of sediment build-up in centrifuges: a compartment approach using compressional rheology. AIChE J. 59, 3843–3855 (2013)

    Article  CAS  Google Scholar 

  23. Usher, S.P., Studer, L.J., Wall, R.C., Scales, P.J.: Characterisation of dewaterability from equilibrium and transient centrifugation test data. Chem. Eng. Sci. 93, 277–291 (2013)

    Article  CAS  Google Scholar 

  24. Green, M.D., Eberl, M., Landman, K.A.: Compressive yield stress of flocculated suspensions: determination via experiment. AIChE J. 42, 2308–2318 (1996)

    Article  CAS  Google Scholar 

  25. Mladenchev, T., Tomas, J.: Modellierung der Filtrations- und Konsoldierungsdynamik von geflockten und nicht geflockten feindispersen Kalksteinsuspensionen. Chemie Ing. Tech. 76, 1814–1818 (2004)

    Article  CAS  Google Scholar 

  26. Erk, B., Luda, A.: Beeinflussung der Schlammkompression in Vollmantelzentrifugen. Chemie Ing. Tech. 75, 1250–1254 (2003). https://doi.org/10.1002/cite.200303260

    Article  CAS  Google Scholar 

  27. Le Moullec, Y., Potier, O., Gentric, C., Leclerc, J.: Flow field and residence time distribution simulation of a cross-flow gas-liquid wastewater treatment reactor using CFD. Chem. Eng. Sci. 63, 2436–2449 (2008)

    Article  Google Scholar 

  28. Gleiss, M., Nirschl, H.: Modeling separation processes in decanter centrifuges by considering the sediment build-up. Chem. Eng. Technol. 38, 1873–1882 (2015)

    Article  CAS  Google Scholar 

  29. Stahl, S., Spelter, L.E., Nirschl, H.: Investigations on the separation efficiency of tubular bowl centrifuges. Chem. Eng. Technol. 31, 1577–1583 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Gleiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gleiss, M., Nirschl, H. (2020). Dynamic Simulation of Mechanical Fluid Separation in Solid Bowl Centrifuges. In: Heinrich, S. (eds) Dynamic Flowsheet Simulation of Solids Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45168-4_7

Download citation

Publish with us

Policies and ethics