Skip to main content

Development of a Dynamic-Physical Process Model for Sieving

  • Chapter
  • First Online:
Dynamic Flowsheet Simulation of Solids Processes

Abstract

For a broad range of applications sieving/screening is well suited to separate bulk materials according to particle sizes. In the treated bulk materials particles frequently prevail in broad size distributions, with non-spherical shape and sometimes even under moist conditions, complicating the separation process. Therefore, it is inevitable to gain a deeper understanding of the subprocesses of screening (size based stratification, particle passage through the screen surface and possible transport along the screen) under the aforementioned conditions. To gain this knowledge, detailed particle-based simulation approaches like the discrete element method (DEM) are available. Based on the latter method, discontinuous and continuous screening as well as its subprocesses are investigated. Therein, different screen geometries and characteristics are considered along with various mechanical excitations applying model and real particle shapes first under dry conditions and later under the influence of various liquid amounts. In order to perform reliable DEM screening simulations, the exact determination of particle properties like size, shape, material and contact parameters is essential, which is required in advance of the simulations. Besides the DEM, the integral outcome of screening can be represented by various phenomenological process models. Usually, the material-, operating-, and apparatus-specific parameters of the latter process models are empirically determined by experiments, whereas, here, the parameters for screening process models are directly obtained from DEM simulations, which allows their benchmarking under defined conditions. Additionally, suitable process models are successfully extended to represent screening processes under the presence of moisture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stieß, M. Mechanische Verfahrenstechnik - Partikeltechnologie 1, Springer, Berlin (2009)

    Google Scholar 

  2. Liu, K.: Some factors affecting sieving performance and efficiency. Powder Technol. 193(2), 208–213 (2009)

    CAS  Google Scholar 

  3. Grozubinsky, V., Sultanovitch, E., Lin, I.J.: Efficiency of solid particle screening as a function of screen slot size, particle size, and duration of screening—the theoretical approach. Int. J. Miner. Process. 52(4), 261–272 (1998)

    CAS  Google Scholar 

  4. Bunge, R.: Mechanische Aufbereitung - Primär- und Sekundärrohstoffe, 1st edn. Wiley-VCH Verlag, Weinheim (2012)

    Google Scholar 

  5. Kruse, R.: Mechanische Verfahrenstechnik - Grundlagen der Flüssigkeitsförderung und der Partikeltechnologie. Wiley-VCH Verlag, Weinheim (1999)

    Google Scholar 

  6. Schmidt, P., Körber, R., Coppers, M.: Sieben und Siebmaschinen - Grundlagen und Anwendungen. Wiley-VCH Verlag, Weinheim (2003)

    Google Scholar 

  7. Yoshida, Y., Ishikawa, S., Shimosaka, A., Shirakawa, Y., Hidaka, J.: Estimation equation for sieving rate based on the model for undersized particles passing through vibrated particle bed. J. Chem. Eng. Jpn. 46(2), 116–126 (2013)

    CAS  Google Scholar 

  8. Cleary, P.W., Sinnott, M.D., Morrison, R.D.: Separation performance of double deck banana screens—Part 1: flow and separation for different accelerations. Miner. Eng. 22(14), 1218–1229 (2009)

    CAS  Google Scholar 

  9. Soldinger, M.: Interrelation of stratification and passage in the screening process. Miner. Eng. 12(5), 497–516 (1999)

    CAS  Google Scholar 

  10. Soldinger, M.: Influence of particle size and bed thickness on the screening process. Miner. Eng. 13(3), 297–312 (2000)

    CAS  Google Scholar 

  11. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Google Scholar 

  12. Walton, O.R., Braun, R.L.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30, 949–980 (1986)

    Google Scholar 

  13. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62(13), 3378–3396 (2007)

    CAS  Google Scholar 

  14. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63(23), 5728–5770 (2008)

    CAS  Google Scholar 

  15. Cleary, P.W. Large scale industrial DEM modelling. Eng. Computations 21(2/3/4), 169–204 (2004)

    Google Scholar 

  16. Lu, G., Third, J.R., Müller, C.R.: Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127, 425–465 (2015)

    CAS  Google Scholar 

  17. Höhner, D., Wirtz, S., Kruggel-Emden, H., Scherer, V.: Comparison of the multi-sphere and polyhedral approach to simulate non-spherical particles within the discrete element method: influence on temporal force evolution for multiple contacts. Powder Technol. 208(3), 643–656 (2011)

    Google Scholar 

  18. Mio, H., Shimosaka, A., Shirakawa, Y., Hidaka, J.: Optimum cell size for contact detection in the algorithm of the discrete element method. J. Chem. Eng. Jpn. 38(12), 969–975 (2005)

    CAS  Google Scholar 

  19. Cleary, P.W.: The effect of particle shape on simple shear flows. Powder Technol. 179(3), 144–163 (2008)

    CAS  Google Scholar 

  20. Mead, S.R., Cleary, P.W., Robinson, G.K. Characterising the failure and repose angles of irregularly shaped three-dimensional particles using DEM. In: Ninth International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia, pp. 1–6 (2012)

    Google Scholar 

  21. Delaney, G.W., Cleary, P.W. The packing properties of superellipsoids. Europhys. Lett. 89 (3), (2010)

    Google Scholar 

  22. Jensen, R.P., Bosscher, P.J., Plesha, M.E., Edil, T.B.: DEM simulation of granular media-structure interface: effects of surface roughness and particle shape. Int. J. Numer. Anal. Meth. Geomech. 23(6), 531–547 (1999)

    Google Scholar 

  23. Favier, J.F., Abbaspour-Fard, M.H., Kremmer, M., Raji, A.O.: Shape representation of axi-symmetrical, non-spherical particles in discrete element simulation using multielement model particles. Eng. Comput. 16(4), 467–480 (1999)

    Google Scholar 

  24. Favier, J.F., Abbaspour-Fard, M.H., Kremmer, M.: Modeling nonspherical particles using multisphere discrete elements. J. Eng. Mech. 127(10), 971–977 (2001)

    Google Scholar 

  25. Vu-Quoc, L., Zhang, X., Walton, O.R.: A 3-D discrete emelent method for dry granular flows of ellipsoidal particles. Comput. Methods Appl. Mech. Eng. 187, 483–528 (2000)

    Google Scholar 

  26. Kruggel-Emden, H., Rickelt, S., Wirtz, S., Scherer, V.: A study on the validity of the multi-sphere Discrete Element Method. Powder Technol. 188(2), 153–165 (2008)

    CAS  Google Scholar 

  27. Markauskas, D., Kačianauskas, R.: Investigation of rice grain flow by multi-sphere particle model with rolling resistance. Granular Matter 13(2), 143–148 (2011)

    Google Scholar 

  28. Munjiza, A., Latham, J.P., John, N.W.M.: 3D dynamics of discrete element systems comprising irregular discrete elements—integration solution for finite rotations in 3D. Int. J. Numer. Meth. Eng. 56(1), 35–55 (2003)

    Google Scholar 

  29. Elskamp, F., Kruggel-Emden, H.: DEM simulations of screening processes under the influence of moisture. Chem. Eng. Res. Des. 136, 593–609 (2018)

    CAS  Google Scholar 

  30. Elskamp, F., Kruggel-Emden, H., Hennig, M., Teipel, U.: A strategy to determine DEM parameters for spherical and non-spherical particles. Granular Matter 19(3), 46 (2017)

    Google Scholar 

  31. Kruggel-Emden, H., Simsek, E., Rickelt, S., Wirtz, S., Scherer, V.: Review and extension of normal force models for the Discrete Element Method. Powder Technol. 171(3), 157–173 (2007)

    CAS  Google Scholar 

  32. Di Renzo, A., Di Maio, F.P.: Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59(3), 525–541 (2004)

    Google Scholar 

  33. Kruggel-Emden, H., Wirtz, S., Scherer, V.: A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior. Chem. Eng. Sci. 63(6), 1523–1541 (2008)

    CAS  Google Scholar 

  34. Kruggel-Emden, H., Rickelt, S., Wirtz, S., Scherer, V.: A numerical study on the sensitivity of the discrete element method for hopper discharge. J. Pressure Vessel Technol. 131(3), 031211 (2009)

    Google Scholar 

  35. Cleary, P.W., Sawley, M.L.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2), 89–111 (2002)

    Google Scholar 

  36. Höhner, D., Wirtz, S., Scherer, V.: Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method. Powder Technol. 235, 614–627 (2013)

    Google Scholar 

  37. Di Renzo, A., Di Maio, F.P.: An improved integral non-linear model for the contact of particles in distinct element simulations. Chem. Eng. Sci. 60, 1303–1312 (2005)

    Google Scholar 

  38. Ge, W., Wang, L., Xu, J., Chen, F., Zhou, G., Lu, L., Chang, Q., Li, J.: Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application. Rev. Chem. Eng. 33(6), 551–623 (2017)

    Google Scholar 

  39. Rabinovich, Y.I., Esayanur, M.S., Moudgil, B.M.: Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment. Langmuir 21(24), 10992–10997 (2005)

    CAS  PubMed  Google Scholar 

  40. Willett, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.K.: Capillary bridges between two spherical bodies. Langmuir 16(10), 9396–9405 (2000)

    CAS  Google Scholar 

  41. Weigert, T., Ripperger, S.: Calculation of the Liquid bridge volume and bulk saturation from the half-filling angle. Part. Part. Syst. Charact. 16(5), 238–242 (1999)

    CAS  Google Scholar 

  42. Adams, M.J., Perchard, V.: The cohesive forces between particles with interstitial liquid. Int. Chem. Eng. Symp. Ser. 91, 147–160 (1985)

    CAS  Google Scholar 

  43. Goldman, A.J., Cox, R.G., Brenner, H.: Slow viscous motion of a sphere parall to a plane wall—I Motion through a quiescent fluid. Chem. Eng. Sci. 22(4), 653–660 (1967)

    CAS  Google Scholar 

  44. Pitois, O., Moucheront, P., Chateau, X.: Liquid bridge between two moving spheres: an experimental study of viscosity effects. J. Colloid Interface Sci. 231, 26–31 (2000)

    CAS  PubMed  Google Scholar 

  45. Pitois, O., Moucheront, P., Chateau, X.: Rupture energy of a pendular liquid bridge. Eur. Phys. J. B 23, 79–86 (2001)

    CAS  Google Scholar 

  46. Pepin, X., Rossetti, D., Iveson, S.M., Simons, S.J.R.: Modeling the evolution and rupture of pendular liquid bridges in the presence of large wetting hysteresis. J. Colloid Interface Sci. 232, 289–297 (2000)

    CAS  PubMed  Google Scholar 

  47. Shi, D., McCarthy, J.J.: Numerical simulation of liquid transfer between particles. Powder Technol. 184, 64–75 (2008)

    CAS  Google Scholar 

  48. Lian, G., Thornton, C., Adams, M.J.: A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161, 138–147 (1993)

    CAS  Google Scholar 

  49. Lian, G., Seville, J.: The capillary bridge between two spheres: new closed-form equations in a two century old problem. Adv. Coll. Interface. Sci. 227, 53–62 (2016)

    CAS  Google Scholar 

  50. Gladkyy, A., Schwarze, R.: Comparison of different capillary bridge models for application in the discrete element method. Granular Matter 16(6), 911–920 (2014)

    CAS  Google Scholar 

  51. Mikami, T., Kamiya, H., Horio, M.: Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Eng. Sci. 53(10), 1927–1940 (1998)

    CAS  Google Scholar 

  52. Washino, K., Chan, E.L., Miyazaki, K., Tsuji, T., Tanaka, T.: Time step criteria in DEM simulation of wet particles in viscosity dominant systems. Powder Technol. 302, 100–107 (2016)

    CAS  Google Scholar 

  53. Schmelzle, S., Nirschl, H.: DEM simulations: mixing of dry and wet granular material with different contact angles. Granular Matter 20, 19 (2018)

    Google Scholar 

  54. Radl, S., Kalvoda, E., Glasser, B.J., Khinast, J.G.: Mixing characteristics of wet granular matter in a bladed mixer. Powder Technol. 200(3), 171–189 (2010)

    CAS  Google Scholar 

  55. Scholtès, L., Chareyre, B., Nicot, F., Darve, F.: Discrete modelling of capillary mechanisms in multi-phase granular media. Comput. Model. Eng. Sci. 52(3), 297–318 (2009)

    Google Scholar 

  56. Melnikov, K., Mani, R., Wittel, F.K., Thielmann, M., Herrmann, H.J.: Grain scale modeling of arbitrary fluid saturation in random packings. Phys. Rev. E 92(2), 022206 (2015)

    Google Scholar 

  57. Wang, J., Gallo, E., François, B., Gabrieli, F., Lambert, P.: Capillary force and rupture of funicular liquid bridges between three spherical bodies. Powder Technol. 305, 89–98 (2017)

    CAS  Google Scholar 

  58. Butt, H.-J., Kappl, M.: Surface and Interfacial Forces. Wiley-VCH Verlag, Weinheim (2010)

    Google Scholar 

  59. Coetzee, C.J.: Review: calibration of the discrete element method. Powder Technol. 310, 104–142 (2017)

    CAS  Google Scholar 

  60. Marigo, M., Stitt, E.H.: Discrete element method (DEM) for industrial applications: comments on calibration and validation for the modelling of cylindrical pellets. KONA Powder Part. J. 32(32), 236–252 (2015)

    Google Scholar 

  61. Simons, T.A.H., Weiler, R., Strege, S., Bensmann, S., Schilling, M., Kwade, A.: A ring shear tester as calibration experiment for DEM simulations in agitated mixers—a sensitivity study. Procedia Eng. 102, 741–748 (2015)

    Google Scholar 

  62. Grima, A.P., Wypych, P.W.: Investigation into calibration of discrete element model parameters for scale-up and validation of particle-structure interactions under impact conditions. Powder Technol. 212(1), 198–209 (2011)

    CAS  Google Scholar 

  63. Barrios, G.K.P., de Carvalho, R.M., Kwade, A., Tavares, L.M.: Contact parameter estimation for DEM simulation of iron ore pellet handling. Powder Technol. 248, 84–93 (2013)

    CAS  Google Scholar 

  64. Markauskas, D., Kačianauskas, R., Džiugys, A., Navakas, R.: Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations. Granular Matter 12(1), 107–123 (2010)

    Google Scholar 

  65. Pasha, M., Hare, C., Ghadiri, M., Gunadi, A., Piccione, P.M.: Effect of particle shape on flow in discrete element method simulation of a rotary batch seed coater. Powder Technol. 296, 29–36 (2016)

    CAS  Google Scholar 

  66. Williams, K.C., Chen, W., Weeger, S., Donohue, T.J.: Particle shape characterisation and its application to discrete element modelling. Particuology 12(1), 80–89 (2014)

    Google Scholar 

  67. Mollon, G., Zhao, J.: Generating realistic 3D sand particles using Fourier descriptors. Granular Matter 15(1), 95–108 (2013)

    Google Scholar 

  68. Just, S., Toschkoff, G., Funke, A., Djuric, D., Scharrer, G., Khinast, J., Knop, K., Kleinebudde, P.: Experimental analysis of tablet properties for discrete element modeling of an active coating process. AAPS PharmSciTech 14(1), 402–411 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chung, Y.-C., Ooi, J.Y.: A study of influence of gravity on bulk behaviour of particulate solid. Particuology 6(6), 467–474 (2008)

    CAS  Google Scholar 

  70. González-Montellano, C., Fuentes, J.M., Ayuga-Téllez, E., Ayuga, F.: Determination of the mechanical properties of maize grains and olives required for use in DEM simulations. J. Food Eng. 111(4), 553–562 (2012)

    Google Scholar 

  71. Senetakis, K., Coop, M.R., Todisco, M.C.: The inter-particle coefficient of friction at the contacts of Leighton Buzzard sand quartz minerals. Soils Found. 53(5), 746–755 (2013)

    Google Scholar 

  72. Ucgul, M., Fielke, J.M., Saunders, C.: Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling. Inf. Process. Agric. 2(2), 130–141 (2015)

    Google Scholar 

  73. Chung, Y.C., Lin, C.K., Ai, J.: Mechanical behaviour of a granular solid and its contacting deformable structure under uni-axial compression—Part II: multi-scale exploration of internal physical properties. Chem. Eng. Sci. 144, 421–443 (2016)

    CAS  Google Scholar 

  74. Kretz, D., Callau-Monje, S., Hitschler, M., Hien, A., Raedle, M., Hesser, J.: Discrete element method (DEM) simulation and validation of a screw feeder system. Powder Technol. 287, 131–138 (2016)

    CAS  Google Scholar 

  75. Ucgul, M., Fielke, J.M., Saunders, C.: Three-dimensional discrete element modelling of tillage: determination of a suitable contact model and parameters for a cohesionless soil. Biosys. Eng. 121, 105–117 (2014)

    Google Scholar 

  76. Li, Y., Xu, Y., Thornton, C.: A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles. Powder Technol. 160(3), 219–228 (2005)

    CAS  Google Scholar 

  77. Wong, C.X., Daniel, M.C., Rongong, J.A.: Energy dissipation prediction of particle dampers. J. Sound Vib. 319(1–2), 91–118 (2009)

    Google Scholar 

  78. Alonso-Marroquín, F., Ramírez-Gómez, Á., González-Montellano, C., Balaam, N., Hanaor, D.A.H., Flores-Johnson, E.A., Gan, Y., Chen, S., Shen, L.: Experimental and numerical determination of mechanical properties of polygonal wood particles and their flow analysis in silos. Granular Matter 15(6), 811–826 (2013)

    Google Scholar 

  79. Dong, H., Moys, M.H.: Measurement of impact behaviour between balls and walls in grinding mills. Miner. Eng. 16(6), 543–550 (2003)

    CAS  Google Scholar 

  80. Gorham, D.A., Kharaz, A.H.: The measurement of particle rebound characteristics. Powder Technol. 112(3), 193–202 (2000)

    CAS  Google Scholar 

  81. Höhner, D., Wirtz, S., Scherer, V.: A study on the influence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method. Powder Technol. 253, 256–265 (2014)

    Google Scholar 

  82. Hastie, D.B.: Experimental measurement of the coefficient of restitution of irregular shaped particles impacting on horizontal surfaces. Chem. Eng. Sci. 101, 828–836 (2013)

    CAS  Google Scholar 

  83. Wang, L., Zhou, W., Ding, Z., Li, X., Zhang, C.: Experimental determination of parameter effects on the coefficient of restitution of differently shaped maize in three-dimensions. Powder Technol. 284, 187–194 (2015)

    CAS  Google Scholar 

  84. Chou, H.T., Lee, C.F., Chung, Y.C., Hsiau, S.S.: Discrete element modelling and experimental validation for the falling process of dry granular steps. Powder Technol. 231, 122–134 (2012)

    CAS  Google Scholar 

  85. Coetzee, C.J., Els, D.N.J.: Calibration of discrete element parameters and the modelling of silo discharge and bucket filling. Comput. Electron. Agric. 65(2), 198–212 (2009)

    Google Scholar 

  86. Coetzee, C.J., Els, D.N.: Calibration of granular material parameters for DEM modelling and numerical verification by blade-granular material interaction. J. Terrramech. 46, 15–26 (2009)

    Google Scholar 

  87. Coetzee, C.J., Els, D.N.J., Dymond, G.F.: Discrete element parameter calibration and the modelling of dragline bucket filling. J. Terrramech. 47(1), 33–44 (2010)

    Google Scholar 

  88. Coetzee, C.J.: Calibration of the discrete element method and the effect of particle shape. Powder Technol. 297, 50–70 (2016)

    CAS  Google Scholar 

  89. Wensrich, C.M., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 217, 409–417 (2012)

    CAS  Google Scholar 

  90. Frankowski, P., Morgeneyer, M.: Calibration and validation of DEM rolling and sliding friction coefficients in angle of repose and shear measurements. AIP Conf. Proc. 1542, 851–854 (2013)

    CAS  Google Scholar 

  91. Combarros, M., Feise, H.J., Zetzener, H., Kwade, A.: Segregation of particulate solids: experiments and DEM simulations. Particuology 12(1), 25–32 (2014)

    Google Scholar 

  92. Santos, D.A., Barrozo, M.A.S., Duarte, C.R., Weigler, F., Mellmann, J.: Investigation of particle dynamics in a rotary drum by means of experiments and numerical simulations using DEM. Adv. Powder Technol. 27(2), 692–703 (2016)

    Google Scholar 

  93. Cabiscol, R., Finke, J.H., Kwade, A.: Calibration and interpretation of DEM parameters for simulations of cylindrical tablets with multi-sphere approach. Powder Technol. 327, 232–245 (2018)

    CAS  Google Scholar 

  94. Chung, Y.C., Liao, H.H., Hsiau, S.S.: Convection behavior of non-spherical particles in a vibrating bed: discrete element modeling and experimental validation. Powder Technol. 237, 53–66 (2013)

    CAS  Google Scholar 

  95. Skorych, V., Dosta, M., Hartge, E.-U., Heinrich, S.: Novel system for dynamic flowsheet simulation of solids processes. Powder Technol. 314, 665–679 (2017)

    CAS  Google Scholar 

  96. Dimian, A., Bildea, C., Kiss, A.: Integrated design and simulation of chemical processes. Elsevier 13, 73–156 (2014)

    Google Scholar 

  97. Dosta, M., Heinrich, S., Werther, J.: Fluidized bed spray granulation: analysis of the system behaviour by means of dynamic flowsheet simulation. Powder Technol. 204(1), 71–82 (2010)

    CAS  Google Scholar 

  98. Marquardt, W. Dynamic process simulation—recent progress and future challenges. In: Chemical Process Control CPC-IV, CACHE Publications, pp. 131–180 (1991)

    Google Scholar 

  99. Schwier, D., Hartge, E.U., Werther, J., Gruhn, G.: Global sensitivity analysis in the flowsheet simulation of solids processes. Chem. Eng. Process. 49(1), 9–21 (2010)

    CAS  Google Scholar 

  100. Hartge, E.U., Pogodda, M., Reimers, C., Schwier, D., Gruhn, G., Werther, J.: Flowsheet simulation of solids processes. KONA 24, 146–158 (2006)

    CAS  Google Scholar 

  101. Reimers, C., Werther, J., Gruhn, G.: Flowsheet simulation of solids processes. Data reconciliation and adjustment of model parameters. Chem. Eng. Process.: Process Intensification 47(1), 138–158 (2008)

    CAS  Google Scholar 

  102. Dosta, M., Antonyuk, S., Hartge, E.-U., Heinrich, S.: Parameter estimation for the flowsheet simulation of solids processes. Chem. Ing. Tec. 86(7), 1073–1079 (2014)

    CAS  Google Scholar 

  103. Dehghani, A., Monhemius, A.J., Gochin, R.J. Evaluating the Nakajima et al. model for rectangular-aperture screens. Minerals Eng. 15, 1089–1094 (2002)

    Google Scholar 

  104. Hatch, C.C., Mular, A.L. Simulation of the Brenda Mines Ltd. secondary crusher. In: SME-AIME Annual Meeting, pp. 54–79 (1979)

    Google Scholar 

  105. Plitt, L.R.: The analysis of solid—solid separations in classifiers. CIM Bull. 64, 42–47 (1971)

    Google Scholar 

  106. Rogers, R.S.C.: A classification function for vibrating screens. Powder Technol. 31, 135–137 (1982)

    Google Scholar 

  107. Molerus, O., Hoffmann, H. Darstellung von Windsichtertrennkurven durch ein stochastisches Modell, Chemie Ingenieur Technik 41 (5+6), 340–344 (1969)

    Google Scholar 

  108. Trawinski, H.: Die mathematische Formulierung der Tromp-Kurve. Aufbereitungstechnik 17(248–254), 449–459 (1976)

    Google Scholar 

  109. Elskamp, F., Kruggel-Emden, H., Hennig, M., Teipel, U.: Benchmarking of process models for continuous screening based on discrete element simulations. Miner. Eng. 83, 78–96 (2015)

    CAS  Google Scholar 

  110. Standish, N.: The kinetics of batch sieving. Powder Technol. 41, 57–67 (1985)

    Google Scholar 

  111. Standish, N., Meta, I.A.: Some kinetic aspects of continuous screening. Powder Technol. 41, 165–171 (1985)

    Google Scholar 

  112. Trumic, M., Magdalinovic, N.: New model of screening kinetics. Miner. Eng. 24, 42–49 (2011)

    CAS  Google Scholar 

  113. Andreev, S.E., Perov, V.A., Zverevic, V.V.: Droblenie izmelcenie i grohocenie poleznyh iskopaemyh. Nedra, Moscow (1980)

    Google Scholar 

  114. Subasinghe, G.K.N.S., Schaap, W., Kelly, E.G.: Modelling screening as a conjugate rate process. Int. J. Miner. Process. 28, 289–300 (1990)

    CAS  Google Scholar 

  115. Subasinghe, G.K.N.S., Schaap, W., Kelly, E.G.: Modelling the screening process: a probabilistic approach. Powder Technol. 59, 37–44 (1989)

    CAS  Google Scholar 

  116. Nakajima, Y., Whiten, W.J.: Behaviour of non-spherical particles in screening. Trans. Inst. Min. Metall. 88, C88–C92 (1979)

    Google Scholar 

  117. Ferrara, G., Preti, U., Schena, G.D. Computer-aided use of a screening process model. In: Twentieth International Symposium on the Application of Computers and Mathematics in the Mineral Industries, pp. 153–166 (1987)

    Google Scholar 

  118. Shimosaka, A., Higashihara, S., Hidaka, J.: Estimation of the sieving rate of powders using computer simulation. Adv. Powder Technol. 11(4), 487–502 (2000)

    Google Scholar 

  119. Li, J., Webb, C., Pandiella, S.S., Campbell, G.M.: Discrete particle motion on sieves—a numerical study using the DEM simulation. Powder Technol. 133, 190–202 (2003)

    CAS  Google Scholar 

  120. Gaudin, A.M.: Principles of mineral dressing. McGraw-Hill, New York, USA (1939)

    Google Scholar 

  121. Soldinger, M.: Transport velocity of a crushed rock material bed on a screen. Miner. Eng. 15, 7–17 (2002)

    CAS  Google Scholar 

  122. Elskamp, F., Kruggel-Emden, H.: Review and benchmarking of process models for batch screening based on discrete element simulations. Adv. Powder Technol. 26, 679–697 (2015)

    Google Scholar 

  123. Elskamp, F., Kruggel-Emden, H.: Extension of process models to predict batch screening results under the influence of moisture based on DEM simulations. Powder Technol. 342, 698–713 (2019)

    CAS  Google Scholar 

  124. Dong, K.J., Wang, B., Yu, A.B.: Modeling of particle flow and sieving behavior on a vibrating screen: from discrete particle simulation to process performance prediction. Ind. Eng. Chem. Res. 52(33), 11333–11343 (2013)

    CAS  Google Scholar 

  125. Delaney, G.W., Cleary, P.W., Hilden, M., Morrison, R.D.: Testing the validity of the spherical DEM model in simulating real granular screening processes. Chem. Eng. Sci. 68(1), 215–226 (2012)

    CAS  Google Scholar 

  126. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Longman, Boston, Massachusetts (1989)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by DFG within project SPP 1679 through grant number KR3446/7-1, KR3446/7-2 and KR3446/7-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Kruggel-Emden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Markauskas, D., Kruggel-Emden, H. (2020). Development of a Dynamic-Physical Process Model for Sieving. In: Heinrich, S. (eds) Dynamic Flowsheet Simulation of Solids Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45168-4_5

Download citation

Publish with us

Policies and ethics