Skip to main content

Dynamic Simulation of Technical Precipitation Processes

  • Chapter
  • First Online:
  • 614 Accesses

Abstract

Precipitation of sparingly soluble salts is a widely applied industrial unit operation to produce color pigments or nutritional additives. Simulation of this unit operation on a flowsheet level would be a useful tool to simplify process development and optimization. However, the numerical effort of simulating the industrial standard apparatus for precipitation, the stirred-tank reactor (STR), is generally too high for process flowsheet simulation. This high computational cost is due mostly to the complex coupling of mixing and solids formation and the inhomogeneous reaction environment in STRs. Handling of this multiscale challenge in a short time scale, thus, requires the development of numerically efficient short-cut surrogate models. In this chapter, we provide an overview of the results from of our project aiming to develop a dynamic precipitation model for flowsheet simulation using the example of semi-batch precipitation of barium sulfate. This chapter covers the full development progress with step-by-step increasing complexity from steady-state to semi-batch process scale. Multiple experimental setups are used to proof the model hypotheses. The steady-state and dynamic semi-batch precipitation model are exemplarily implemented in the flowsheet framework Dyssol. By using these flowsheet units, the specific process dynamics of semi-batch precipitation processes is investigated. It is, furthermore, demonstrated that using dynamic process parameters (e.g. increasing impeller rotational speed) might be a suitable method to optimize the product particle size distribution (PSD) for semi-batch precipitations in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

\( B \) :

Nucleation rate \( [ {\text{m}}^{ - 4} {\text{s}}^{ - 1} ] \)

\( B_{\text{T}} \) :

Baffles size [m]

\( C_{\text{T}} \) :

Stirrer off-bottom clearance [m]

\( \tilde{c} \) :

Molar concentration \( [ {\text{mol}}^{1} {\text{m}}^{ - 3} ] \)

\( C \) :

Nucleation kinetics constant [–]

\( \overline{D}_{{{\text{ri}},{\text{sol}}}} \) :

Average diffusion coefficient of reactive ions (ri) in solvent (sol) \( [ {\text{m}}^{2} {\text{s}}^{ - 1} ] \)

\( D_{\text{T}} \) :

Impeller diameter [m]

\( d_{\text{prim}} \) :

Inner feed pipe diameter [m]

\( E \) :

Engulfment constant \( [ {\text{s}}^{ - 1} ] \)

\( f_{\text{rec}} \) :

Recalculation frequency [–]

\( G \) :

Growth rate \( [ {\text{m}}^{1} {\text{s}}^{ - 1} ] \)

\( H_{\text{T}} \) :

Feed pipe off-bottom clearance [m]

\( J \) :

Nucleation kinetics factor \( [ {\text{m}}^{ - 3} {\text{s}}^{ - 1} ] \)

\( K \) :

Solubility product \( [ {\text{mol}}^{2} {\text{m}}^{ - 6} ] \)

\( k_{\text{B}} \) :

Boltzmann constant \( [ {\text{m}}^{2} {\text{kg}}^{1} {\text{s}}^{ - 1} {\text{K}}^{ - 1} ] \)

\( L \) :

Particle diameter [m]

\( \bar{L}_{{{\text{mol}},{\text{ri}}}} \) :

Average molecular diameter of reactive ions [m]

\( L_{\text{crit}} \) :

Critical nucleation radius [m]

\( L_{ \text{min} } \) :

Minimal particle size of PSD grid [m]

\( L_{ \text{max} } \) :

Maximal particle size of PSD grid [m]

\( L_{50,3} \) :

Median of volume-based PSD [m]

\( {\Delta }L \) :

PSD grid spacing [m]

\( M \) :

Mass [kg]

\( \dot{M} \) :

Mass flow \( [ {\text{kg}}^{1} {\text{s}}^{ - 1} ] \)

\( \tilde{M} \) :

Molar mass \( [ {\text{kg}}^{1} {\text{mol}}^{ - 1} ] \)

\( m_{i} \) :

Mass of particles in class \( i \) [kg]

\( N \) :

Stirrer rotational speed \( [ {\text{s}}^{ - 1} ] \)

n :

Particle number density \( [ {\text{m}}^{ - 4} ] \)

\( n_{{{\text{A}}/{\text{B}}}} \) :

Particle number density in zone A or B \( [ {\text{m}}^{ - 4} ] \)

\( n_{\text{t}} \) :

Total particle density \( [ {\text{m}}^{ - 3} ] \)

\( n_{\text{r}} \) :

Refractive index [–]

\( Q \) :

Volume flow \( [ {\text{m}}^{3} {\text{s}}^{ - 1} ] \)

\( q_{0} \) :

Number-based PSD \( [ {\text{m}}^{ - 1} ] \)

\( q_{3} \) :

Volume-based PSD \( [ {\text{m}}^{ - 1} ] \)

\( R \) :

Free lattice ion ratio [–]

\( R_{\text{T}} \) :

Radial position of feed pipe [–]

\( S_{a} \) :

Activity-based saturation [–]

\( T_{\text{T}} \) :

Tank diameter [m]

\( T \) :

Temperature [K]

\( t \) :

Process time [s]

\( \Delta t \) :

Semi-batch model timestep [s]

\( \bar{u} \) :

Average velocity \( [ {\text{m}}^{1} {\text{s}}^{ - 1} ] \)

\( V_{{{\text{mol}},{\text{s}}}} \) :

Molecular volume of solid [m3]

\( V^{L} \) :

Liquid phase volume [m3]

\( V_{\text{BF}} \) :

Bulk fluid volume [m3]

\( w_{i} \) :

Particle mass fraction in particle size class i [–]

x :

Mass fraction [–]

\( x_{j}^{\text{L}} \) :

Component mass fractions in liquid phase [–]

z :

Mixer length coordinate [m]

\( \alpha_{\text{abs}} \) :

Absorption coefficient [–]

\( \alpha_{k} \) :

Volume fraction of zone k [–]

\( \beta \) :

Splitting factor/recycle ratio [–]

\( \gamma_{ \pm } \) :

Activity coefficient [–]

\( \gamma_{\text{sl}} \) :

Solid-liquid interface tension \( [ {\text{N}}^{1} {\text{m}}^{ - 1} ] \)

\( \delta \) :

Dirac-delta function \( [ {\text{m}}^{ - 1} ] \)

\( \bar{\varepsilon } \) :

Average energy dissipation \( [ {\text{m}}^{2} {\text{s}}^{ - 3} ] \)

\( \mu \) :

Dynamic viscosity \( [ {\text{Pa}}^{1} {\text{s}}^{1} ] \)

\( \nu \) :

Kinematic viscosity \( [ {\text{m}}^{2} {\text{s}}^{ - 1} ] \)

\( \xi^{\text{S}} \) :

Mass fraction of solid phase [–]

\( \xi^{\text{L}} \) :

Mass fraction of liquid phase [–]

\( \upsilon_{\text{s}} \) :

Number of ions for solids formation [–]

\( \vartheta_{{m,{\text{sf}}}} \) :

Stochiometric coefficients of solids formation reaction [–]

\( \tilde{\rho }_{\text{s}} \) :

Molar density of solid [\( {\text{kg}}^{1} {\text{m}}^{ - 3} \)]

\( \tau_{\text{mix}} \) :

Time scale of mixing [s]

\( \tau_{\text{sf}} \) :

Time scale of solids formation [s]

\( \tau_{\text{ct}} \) :

Computational time (real time) [s]

i :

Particle size class index

j :

Compound index in liquid phase (solved ions and solvent)

k :

Mixing fraction index

m :

Index for solved ions in liquid phase

\( w \) :

Index for solvents in liquid phase

0:

Index for initial value \( (t = 0) \)

sf:

Solids formation

mix:

Mixing

ri:

Reactive ions

sol:

Solvent

out:

Outlet

mol:

Molecular

L:

Liquid phase

S:

Solid phase

1:1:

1:1 mixture of educt fluids for well-mixed condition

BF:

Bulk fluid

CFD:

Computational fluid dynamics

CIJM:

Confined impinging jet mixer

STR:

Stirred-tank reactor

DLS:

Dynamic light scattering

E-model:

Engulfment model

MSMPR:

Mixed-suspension, mixed product-removal

JICF:

Jet in cross flow

PBE:

Population balance equation

PFR:

Plug flow reactor

PSD:

Particle size distribution

SEM:

Scanning electron microscopy

SLS:

Static light scattering

Sh :

Sherwood number [–]

References

  1. Metzger, L., Kind, M.: Influence of mixing on particle formation of fast precipitation reactions—A new coarse graining method using CFD calculations as a “measuring” instrument. Chem. Eng. Res. Des. 10, 176–185 (2016)

    Article  Google Scholar 

  2. Metzger, L., Kind, M.: On the transient flow characteristics in confined impinging jet mixers—CFD simulation and experimental validation. Chem. Eng. Sci. 133, 91–105 (2015)

    Article  CAS  Google Scholar 

  3. Metzger, L., Kind, M.: The influence of mixing on fast precipitation processes—A coupled 3D CFD-PBE approach using the direct quadrature method of moments (DQMOM). Chem. Eng. Sci. 169, 284–298 (2017)

    Article  CAS  Google Scholar 

  4. Metzger, L., Kind, M.: On the mixing in confined impinging jet mixers—Time scale analysis and scale-up using CFD coarse-graining methods. Chem. Eng. Res. Des. 109, 464–476 (2016)

    Article  CAS  Google Scholar 

  5. Rehage, H., Scherer, S., Kind, M.: A steady-state precipitation model for flowsheet simulation and its application. Comput. Chem. Eng. 128, 524–537 (2019)

    Article  CAS  Google Scholar 

  6. Barrett, M., O’Grady, D., Casey, E., Glennon, B.: The role of meso-mixing in anti-solvent crystallization processes. Chem. Eng. Sci. 66(12), 2523–2534 (2011)

    Article  CAS  Google Scholar 

  7. Jaworski, Z., Nienow, A.W.: CFD modelling of continuous precipitation of barium sulphate in a stirred tank. Chem. Eng. J. 91(2–3), 167–174 (2003)

    Article  CAS  Google Scholar 

  8. Jones, A., Rigopoulos, S., Zauner, R.: Crystallization and precipitation engineering. Comput. Chem. Eng. 29(6), 1159–1166 (2005)

    Article  CAS  Google Scholar 

  9. Vicum, L., Ottiger, S., Mazzotti, M., Makowski, Ł., Bałdyga, J.: Multi-scale modeling of a reactive mixing process in a semibatch stirred tank. Chem. Eng. Sci. 59(8–9), 1767–1781 (2004)

    Article  CAS  Google Scholar 

  10. Vicum, L., Mazzotti, M.: Multi-scale modeling of a mixing-precipitation process in a semibatch stirred tank. Chem. Eng. Sci. 62(13), 3513–3527 (2007)

    Article  CAS  Google Scholar 

  11. Wang, Z., Mao, Z., Yang, C., Shen, X.: Computational fluid dynamics approach to the effect of mixing and draft tube on the precipitation of barium sulfate in a continuous stirred tank. Chin. J. Chem. Eng. 14(6), 713–722 (2006)

    Article  CAS  Google Scholar 

  12. Wang, Z., Zhang, Q.H., Yang, C., Mao, Z.-S., Shen, X.Q.: Simulation of barium sulfate precipitation using CFD and FM-PDF modeling in a continuous stirred tank. Chem. Eng. Technol. 30(12), 1642–1649 (2007)

    Article  CAS  Google Scholar 

  13. Zauner, R., Jones, A.G.: Mixing effects on product particle characteristics from semi-batch crystal precipitation. Chem. Eng. Res. Des. 78(6), 894–902 (2000)

    Article  CAS  Google Scholar 

  14. Zhang, Q., Mao, Z.-S., Yang, C., Zhao, C.: Numerical simulation of barium sulfate precipitation process in a continuous stirred tank with multiple-time-scale turbulent mixer model. Ind. Eng. Chem. Res. 48(1), 424–429 (2009)

    Article  CAS  Google Scholar 

  15. Matynia, A., Piotrowski, K., Koralewska, J.: Barium sulphate crystallization kinetics in the process of barium ions precipitation by means of crystalline ammonium sulphate addition. Chem. Eng. Process. 44(4), 485–495 (2005)

    Article  CAS  Google Scholar 

  16. Steyer, C., Sundmacher, K.: Impact of feeding policy and ion excess on particle shape in semi-batch precipitation of barium sulfate. J. Cryst. Growth 311(9), 2702–2708 (2009)

    Article  CAS  Google Scholar 

  17. Torbacke, M., Rasmuson, Å.C.: Mesomixing in semi-batch reaction crystallization and influence of reactor size. AIChE J. 50(12), 3107–3119 (2004)

    Article  CAS  Google Scholar 

  18. Alexopoulos, A.H., Maggioris, D., Kiparissides, C.: CFD analysis of turbulence non-homogeneity in mixing vessels. A two-compartment model. Chem. Eng. Sci. 57(10), 1735–1752 (2002)

    CAS  Google Scholar 

  19. Alopaeus, V., Moilanen, P., Laakkonen, M.: Analysis of stirred tanks with two-zone models. AIChE J. 55(10), 2545–2552 (2009)

    Article  CAS  Google Scholar 

  20. Bourne, J.R., Yu, S.: Investigation of micromixing in stirred tank reactors using parallel reactions. Ind. Eng. Chem. Res. 33(1), 41–55 (1994)

    Article  CAS  Google Scholar 

  21. Judat, B., Racina, A., Kind, M.: Macro- and micromixing in a Taylor-Couette reactor with axial flow and their influence on the precipitation of barium sulfate. Chem. Eng. Technol. 27(3), 287–292 (2004)

    Article  CAS  Google Scholar 

  22. Kim, W.-S., Tarbell, J.M.: Micromixing effects on barium sulfate precipitation in an MSMPR reactor. Chem. Eng. Commun. 146, 33–56 (1996)

    Google Scholar 

  23. van Leeuwen, M.L.J., Bruinsma, O.S.L., van Rosmalen, G.M.: Three-zone approach for precipitation of barium sulphate. J. Cryst. Growth 166, 1004–1008 (1996)

    Article  Google Scholar 

  24. Bałdyga, J., Bourne, J.R.: Turbulent Mixing and Chemical Reactions. Wiley. ISBN 0-471-98171-0 (1999)

    Google Scholar 

  25. Bałdyga, J., Podgórska, W., Pohorecki, R.: Mixing-precipitation model with application to double feed semibatch precipitation. Chem. Eng. Sci. 50(8), 1281–1300 (1995)

    Article  Google Scholar 

  26. Ståhl, M., Rasmuson, Å.C.: Towards predictive simulation of single feed semibatch reaction crystallization. Chem. Eng. Sci. 64(7), 1559–1576 (2009)

    Article  Google Scholar 

  27. Kügler, R.T., Doyle, S., Kind, M.: Fundamental insights into barium sulfate precipitation by time-resolved in situ synchrotron radiation wide-angle X-ray scattering (WAXS). Chem. Eng. Sci. 133, 140–147 (2015)

    Article  Google Scholar 

  28. Kucher, M., Babic, D., Kind, M.: Precipitation of barium sulfate. Experimental investigation about the influence of supersaturation and free lattice ion ratio on particle formation. Chem. Eng. Process 45(10), 900–907 (2006)

    Google Scholar 

  29. Rehage, H., Nikq, F., Kind, M.: Experimental investigation of a two-zone model for semi-batch precipitation in stirred-tank reactors. Chem. Eng. Sci. 207, 258–270 (2019)

    Article  CAS  Google Scholar 

  30. Deutsches Institut für Normung (DIN 28131).: Agitators and Baffles for Agitator Vessels; Types, Terms and Main Dimensions. Berlin (1992)

    Google Scholar 

  31. Skorych, V., Dosta, M., Hartge, E.-U., Heinrich, S.: Novel system for dynamic flowsheet simulation of solids processes. Powder Technol. 314, 665–679 (2017)

    Article  CAS  Google Scholar 

  32. Bałdyga, J., Bourne, J.R., Hearn, S.J.: Interaction between chemical reactions and mixing on various scales. Chem. Eng. Sci. 52, 457–466 (1997)

    Article  Google Scholar 

  33. Schwarzer, H.-C.: Nanoparticle Precipitation: An Experimental and Numerical Investigation Including Mixing. Logos-Verlag. ISBN 978-3-8325-0916-3 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kind .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rehage, H., Kind, M. (2020). Dynamic Simulation of Technical Precipitation Processes. In: Heinrich, S. (eds) Dynamic Flowsheet Simulation of Solids Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45168-4_4

Download citation

Publish with us

Policies and ethics