Skip to main content

Dynamic Modelling of Reactive Fluidized Bed Systems Using the Example of the Chemical Looping Combustion Process for Solid Fuels

  • Chapter
  • First Online:
Dynamic Flowsheet Simulation of Solids Processes

Abstract

The novel open-source flowsheet simulation software DYSSOL was used to simulate effects inside a system of interconnected fluidized bed reactors. The development of the needed models was done exemplary for the Chemical Looping Combustion process for solid and gaseous fuels. In CLC a solid oxygen carrier material is circulated between interconnected fluidized bed reactors. In the simulation, the focus is laid on the prediction of the dynamics of the whole system, especially the process start-up, shut-down and fuel load change. A dynamic model, which can be applied for bubbling beds and circulating fluidized beds was derived. Additionally, a cyclone was introduced for gas-solid separation. Loop seals ensure gas sealing between the reactors and were included into the modeling. Fluid mechanics inside the systems are modeled with empirical and semi-empirical, one-dimensional correlations, to enable fast calculations. These considerations allow real-time simulations of long-term effects in the system. The chemical reactions for gaseous and solid fuel combustions are included in the simulation. This has an effect on the solid oxygen carrier and so the oxidation and reduction of the carrier are regarded. The simulations were validated with experiments on a 25 kWth Chemical Looping Combustion facility at TUHH. The flowsheet models are able to predict the movement of the bed material between the units after operation changes as well as the time frames in which these changes occur. Besides, the gas and solids conversions in the fluidized bed reactors were simulated accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AR:

Air Reactor

CCS:

Carbon Capture and Storage

CFB:

Circulating Fluidized Bed

CFD:

Computational Fluid Dynamics

CLC:

Chemical Looping Combustion

CLOU:

Chemical Looping with Oxygen Uncoupling

CSTR:

Continuously Stirred Tank Reactor

FR:

Fuel Reactor

iG-CLC:

In situ Gasification-CLC

OC:

Oxygen Carrier

PFR:

Plug Flow Reactor

S:

Siphon/loop seal

SP:

Standpipe

a:

Decay constant in the freeboard region (–)

Ar:

Archimedes number (–)

Ar:

Cross-sectional area of reactor (m2)

as:

Share ratio of flow which is in inner cyclone vortex (–)

at:

Ratio of interfacial area between bubble and suspension phase to the volume of a reactor element (1/m)

C:

Weir coefficient (–)

Cb,l:

Gas concentration of gas component l in bubble phase (mol/m3)

Cd,l:

Gas concentration of gas component l in dense suspension phase (mol/m3)

Cf,l:

Gas concentration of gas component l in the freeboard (mol/m3)

cv:

Solids concentration (–)

cv,i,∞:

Solids concentration above the transport disengagement height (–)

cv,mf:

Solids concentration at minimum fluidization velocity (–)

cv,suspension:

Solids concentration in the dense suspension phase (–)

D:

Molar binary diffusion coefficient (m2/s)

Dc:

Cyclone design parameter (–)

d*:

Cyclone cut size diameter (m)

di,p:

Average particle size in class i (m)

dp:

Particle diameter (m)

dv:

Bubble size (m)

dv,0:

Initial bubble size (m)

Ea:

Activation energy for the reaction (J)

Fg:

Fd gravitational and drag force (kg m/s2)

g:

Gravitational acceleration (m/s2)

Gs,i,∞:

Solids circulation rate (kg/(m2s))

h:

Height inside the reactor (m)

Hb:

Height above the distributor where dense bottom zone ends (m)

Hw:

Weir height (m)

\({\dot{\text{J}}}_{{{\text{Q}},{\text{l}}}}\) :

Convective flow of gas component l (mol/m3)

k0:

Pre-exponential factor (mol1−n Ln−1 s−1)

k1–k7:

Reaction rate constant (mol1−n Ln−1 s−1)

kG:

Gas diffusion resistance (mol/s)

Ki,∞:

Elutriation rate for each particle interval i (kg/(m2 s))

KQ:

Convective exchange rate of gas l (1/s)

ṁ:

Mass flow rate (kg/s)

mr:

Total reactor inventory (m)

n:

Reaction order (–)

p:

Pressure (Pa)

ΔQ3,i:

Particle size class fraction (–)

R:

Universal gas constant (J/(K mol))

rg,l:

Reaction rate of solid with gaseous component l (mol/m3)

T(ut,i):

Cyclone separation efficiency curve (–)

u:

Superficial gas velocity (m/s)

ub:

Bubble rise velocity (m/s)

ud:

Velocity in dense suspension phase (m/s)

umf:

Minimum fluidization velocity (m/s)

ut,i:

Terminal velocity of particles in size interval i (m/s)

b:

Visible bubble volumetric flow (m3/s)

or:

Volumetric flow through a single orifice (m3/s)

W:

Width of the standpipe/weir (m)

Xj,l:

Solids conversion of component j with gas component l (–)

µ:

Gas viscosity (Pa·s)

εb:

Bubble volume fraction (–)

εmf:

Minimum fluidization voidage (–)

ηf(d):

Cyclone separation efficiency (–)

θ:

Scale dependent geometry parameter (–)

λ:

Average bubble lifetime (s)

ρm,j:

Molar density of solid reactant j (mol/m3)

ρsolid:

Solid density (kg/m3)

0:

Initial

b:

Bubble

d:

Dense suspension phases

f:

Freeboard

i:

Particle size class

j:

Solid component

l:

Gas component

References

  1. Porrazzo, R., White, G., Ocone, R.: Aspen Plus simulations of fluidised beds for chemical looping combustion. Fuel 136, 46–56 (2014)

    Article  CAS  Google Scholar 

  2. Mukherjee, S., Kumar, P., Yang, A., Fennell, P.: A systematic investigation of the performance of copper-, cobalt-, iron-, manganese- and nickel-based oxygen carriers for chemical looping combustion technology through simulation models. Chem. Eng. Sci. 130, 79–91 (2015)

    Article  CAS  Google Scholar 

  3. Li, F., Zeng, L., Velazquez-Vargas, L.G., Yoscovits, Z., Fan, L.-S.: Syngas chemical looping gasification process: bench-scale studies and reactor simulations. AIChE J. 56, 2186–2199 (2010)

    Article  CAS  Google Scholar 

  4. Sahir, A.H., Dansie, J.K., Cadore, A.L., Lighty, J.S.: A comparative process study of chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) for solid fuels. Int. J. Greenhouse Gas Control 22, 237–243 (2014)

    Article  CAS  Google Scholar 

  5. Peltola, P., Ritvanen, J., Tynjälä, T., Pröll, T., Hyppänen, T.: One-dimensional modelling of chemical looping combustion in dual fluidized bed reactor system. Int. J. Greenhouse Gas Control 16, 72–82 (2013)

    Article  CAS  Google Scholar 

  6. Peltola, P., Ritvanen, J., Tynjälä, T., Hyppänen, T.: Fuel reactor modelling in chemical looping with oxygen uncoupling process. Fuel 147, 184–194 (2015)

    Article  CAS  Google Scholar 

  7. Bolhàr-Nordenkampf, J., Pröll, T., Kolbitsch, P., Hofbauer, H.: Comprehensive modeling tool for chemical looping based processes. Chem. Eng. Technol. 32, 410–417 (2009)

    Article  Google Scholar 

  8. Haus, J., Hartge, E.-U., Heinrich, S., Werther, J.: Dynamic flowsheet simulation for chemical looping combustion of methane. Int. J. Greenhouse Gas Control 72, 26–37 (2018)

    Article  CAS  Google Scholar 

  9. Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., de Diego, L.F.: Progress in chemical-looping combustion and reforming technologies. Progress Energy Combust. Sci. 38, 215–282 (2012)

    Article  CAS  Google Scholar 

  10. Puettmann, A., Hartge, E.-U., Werther, J.: Application of the flowsheet simulation concept to fluidized bed reactor modeling. Part I: Development of a fluidized bed reactor simulation module. Chem. Eng. Process. Process Intensification 60, 86–95 (2012)

    Google Scholar 

  11. Haus, J., Hartge, E.-U., Heinrich, S., Werther, J.: Dynamic flowsheet simulation of gas and solids flows in a system of coupled fluidized bed reactors for chemical looping combustion. Powder Technol. 316, 628–640 (2017)

    Article  CAS  Google Scholar 

  12. Lindmueller, L., Haus, J., Hartge, E.-U., Heinrich, S., Werther, J.: Experimental investigation and simulation of the dynamics in a chemical looping combustion system. In: 5th International Conference on Chemical Looping, 24–27 September 2018, Park City, Utah, USA

    Google Scholar 

  13. Haus, J., Lyu, K., Hartge, E.-U., Heinrich, S., Werther, J.: Analysis of a two-stage fuel reactor system for the chemical-looping combustion of lignite and bituminous coal. Energy Technol. 4, 1263–1273 (2016)

    Article  CAS  Google Scholar 

  14. Werther, J., Hartge, E.-U.: A population balance model of the particle inventory in a fluidized-bed reactor/regenerator system. Powder Technol. 148, 113–122 (2004)

    Article  CAS  Google Scholar 

  15. Werther, J., Wein, J.: Expansion behaviour of gas fludized beds in the turbulent regime. AlChE Symp. 90, 34–44 (1994)

    Google Scholar 

  16. Davidson, J.F., Harrison, D.: Fluidised Particles. University Press Cambridge, Cambridge (1963)

    Google Scholar 

  17. Kunii, D., Levenspiel, O.: Fluidization Engineering. Wiley, New York (1991)

    Google Scholar 

  18. Chew, J.W., Cahyadi, A., Hrenya, C.M., Karri, R., Cocco, R.A.: Review of entrainment correlations in gas–solid fluidization. Chem. Eng. J. 260, 152–171 (2015)

    Article  CAS  Google Scholar 

  19. Choi, J.-H., Suh, J.-M., Chang, I.-Y., Shun, D.-W., Yi, C.-K., Son, J.-E., Kim, S.-D.: The effect of fine particles on elutriation of coarse particles in a gas fluidized bed. Powder Technol. 121, 190–194 (2001)

    Article  CAS  Google Scholar 

  20. Tasirin, S.M., Geldart, D.: Entrainment of FCC from fluidized beds—a new correlation for the elutriation rate constants Ki∞*. Powder Technol. 95, 240–247 (1998)

    Article  CAS  Google Scholar 

  21. Botsio, E., Basu, P.: Experimental investigation into the hydrodynamics of flow of solids through a loop seal recycle chamber. Can. J. Chem. Eng. 83, 554–558 (2005)

    Article  CAS  Google Scholar 

  22. Lyngfelt, A.: Chemical-looping combustion of solid fuels—Status of development. Appl. Energy 113, 1869–1873 (2014)

    Article  CAS  Google Scholar 

  23. Gómez-Barea, A., Leckner, B.: Modeling of biomass gasification in fluidized bed. Progress Energy Combust. Sci. 36, 444–509 (2010)

    Article  Google Scholar 

  24. Abad, A., Adánez, J., García-Labiano, F., de Diego, L.F., Gayán, P.: Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier. Combust. Flame 157, 602–615 (2010)

    Article  CAS  Google Scholar 

  25. Sit, S.P., Grace, J.R.: Effect of bubble interaction on interphase mass transfer in gas fluidized beds. Chem. Eng. Sci. 36, 327–335 (1981)

    Article  CAS  Google Scholar 

  26. Bareschino, P., Solimene, R., Chirone, R., Salatino, P.: Gas and solid flow patterns in the loop-seal of a circulating fluidized bed. Powder Technol. 264, 197–202 (2014)

    Article  CAS  Google Scholar 

  27. Thon, A.: Operation of a System of Interconnected Fluidized Bed Reactors in the Chemical Looping Combustion Process. (Ph.D. Thesis) first ed., Cuvillier (2013)

    Google Scholar 

  28. Trefz, M., Muschelknautz, E.: Extended cyclone theory for gas flows with high solids concentrations. Chem. Eng. Technol. 16, 153–160 (1993)

    Article  CAS  Google Scholar 

  29. Klett, C., Hartge, E.-U., Werther, J.: Time-dependent behavior of the ash particle size distribution in a circulating fluidized bed system. Proc. Combust. Inst. 30, 2947–2954 (2005)

    Article  Google Scholar 

  30. Redemann, K., Hartge, E.-U., Werther, J.: A particle population balancing model for a circulating fluidized bed combustion system. Powder Technol. 191, 78–90 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Heinrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lindmüller, L., Haus, J., Hartge, EU., Heinrich, S. (2020). Dynamic Modelling of Reactive Fluidized Bed Systems Using the Example of the Chemical Looping Combustion Process for Solid Fuels. In: Heinrich, S. (eds) Dynamic Flowsheet Simulation of Solids Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45168-4_2

Download citation

Publish with us

Policies and ethics