Skip to main content

Process Modeling for Dynamic Disperse Particle Separation and Deposition Processes

  • Chapter
  • First Online:
Dynamic Flowsheet Simulation of Solids Processes

Abstract

Dynamic particulate process models are to be derived within the framework of dynamic flowsheet modeling and simulation (FSS). In the contribution FSS is developed for the separation processes of solid particles from a fluid resp. gas. Potential applications of the dynamic simulation environment of particle separation are for instance in the analysis and design of the dynamic process behavior in the purification of exhaust gases (for example to reduce emissions from combustion processes) but also in the production of particle layers with defined properties, as occur in the powder coating of surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jedrusik, M., Swierczok, A., Teisseyre, R.: Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design. Powder Technol. 135, 295–301 (2003)

    Article  Google Scholar 

  2. Dastoori, K., Makin, B., Kolhe, M., Des-Roseaux, M., Conneely, M.: CFD modelling of flue gas particulates in a biomass fired stove with electrostatic precipitation. J. Electrostat. 71, 351–356 (2013)

    Article  Google Scholar 

  3. Prabhu, V., Kim, T., Khakpour, Y., Serre, S.D., Clack, H.L.: Evidence of powdered activated carbon preferential collection and enrichment on electrostatic precipitator discharge electrodes during sorbent injection for mercury emissions control. Fuel Process. Technol. 93, 8–12 (2012)

    Article  CAS  Google Scholar 

  4. Lübbert, C.: Zur Charakterisierung des gequenchten Zustandes im Elektroabscheider (On the characterization of the quenched regime in electrostatic precipitators). Brandenburgische Technische Universität Cottbus, Fakultät für Umweltwissenschaften und Verfahrenstechnik (2011)

    Google Scholar 

  5. Kaul, M., Schmidt, E.: Reduction of fine dust-emissions at inner city areas—opportunities and limitations of electrostatic precipitators. Presented at the international conference and exhibition for filtration and separation technology. Cologne, Germany (2015)

    Google Scholar 

  6. Xiao, G., Wang, X., Yang, G., Ni, M., Gao, X., Cen, K.: An experimental investigation of electrostatic precipitation in a wire–cylinder configuration at high temperatures. Powder Technol. 269, 166–177 (2015)

    Article  CAS  Google Scholar 

  7. Wen, T.-Y., Wang, H.-C., Krichtafovitch, I., Mamishev, A.V.: Novel electrodes of an electrostatic precipitator for air filtration. J. Electrostat. 73, 117–124 (2015)

    Article  Google Scholar 

  8. Deutsch, W.: Bewegung und Ladung der Elektrizitätsträger im Zylinderkondensator. Ann. Phys. 373, 335–344 (1922)

    Article  Google Scholar 

  9. Podliński, J., Niewulis, A., Mizeraczyk, J.: Electrohydrodynamic flow and particle collection efficiency of a spike-plate type electrostatic precipitator. J. Electrostat. 67, 99–104 (2009)

    Article  Google Scholar 

  10. Schmid, H.-J.: On the modelling of the particle dynamics in electro-hydrodynamic flow fields: II. Influences of inhomogeneities on electrostatic precipitation. Powder Technol. 135–136, 136–149 (2003)

    Article  Google Scholar 

  11. Arif, S., Branken, D.J., Everson, R.C., Neomagus, H.W.J.P., le Grange, L.A., Arif, A.: CFD modeling of particle charging and collection in electrostatic precipitators. J. Electrostat. 84, 10–22 (2016)

    Article  CAS  Google Scholar 

  12. Farnoosh, N., Adamiak, K., Castle, G.S.P.: 3-D numerical analysis of EHD turbulent flow and mono-disperse charged particle transport and collection in a wire-plate ESP. J. Electrostat. 68, 513–522 (2010)

    Article  CAS  Google Scholar 

  13. Kaiser, S.: CFD Modellierung und simulation von elektrostatischen Abscheidern nasser Bauart, Ph.D. Technische Universität Dortmund, Germany (2013)

    Google Scholar 

  14. Roghair, I., van den Ende, H.T.M., Mugele, F.: An OpenFOAM-based electro-hydrodynamic model. In: Presented at the 8th International Conference on Multiphase Flow Jeju. Korea (2013)

    Google Scholar 

  15. OpenFOAM. (14.04.2016). OpenFOAM project web pages. http://www.openfoam.org

  16. Javadi, A., Nilsson, H.: Time-accurate numerical simulations of swirling flow with rotor-stator interaction. Flow Turbul. Combust. 95, 755–774 (2015)

    Article  Google Scholar 

  17. Javadi, A.: Time-accurate Turbulence Modeling of Swirling Flow for Hydropower Application, Ph.D. Department of Applied Mechanics, Chalmers university of technology, Gothenburg, Sweden (2014)

    Google Scholar 

  18. Aleksin, Y., Vora, A., Riebel, U.: A new understanding of electric conduction in highly resistive dusts and bulk powders. Powder Technol. 294, 353–364 (2016)

    Article  CAS  Google Scholar 

  19. Pieloth, D., Wiggers, H., Walzel, P.: Influence of thermodynamic, material, and bulk properties on electrical resistivity of particle layers. Chem. Eng. Technol. 37, 627–634 (2014)

    Article  CAS  Google Scholar 

  20. Lübbert, C.: Zur Charakterisierung des gequenchten Zustandes im Elektroabscheider. Ph.D. Thesis, Fakultät für Umweltwissenschaften und Verfahrenstechnik, BTU Cottbus (2012)

    Google Scholar 

  21. Flagan, R.C., Seinfeld, J.H.: Fundamentals of Air Pollution Engineering. Prentice-Hall, Inc., Englewood Cliffs (1988)

    Google Scholar 

  22. McDonald, J.R., Smith, W.B., Spencer III, H.W., Sparks, L.E.: A mathematical model for calculating electrical conditions in wire-duct electrostatic precipitation devices. J. Appl. Phys. 48, 2231–2243 (1977)

    Article  Google Scholar 

  23. Cooperman, G.: A new current-voltage relation for duct precipitators valid for low and high current densities. IEEE Trans. Ind. Appl. IA-17, 236–239 (1981)

    Google Scholar 

  24. Kaiser, S., Fahlenkamp, H.: CFD modelling of the electrical phenomena and the particle precipitation process of wet ESP in coaxial wire-tube configuration. Int. J. Plasma Environ. Sci. Technol. 5, 103–109 (2011)

    Google Scholar 

  25. Lawless, P.A.: Particle charging bounds, symmetry relations, and an analytic charging rate model for the continuum regime. J. Aerosol Sci. 27, 146–160 (1996)

    Article  Google Scholar 

  26. Niewulis, A., Podliński, J., Mizeraczyk, J.: Electrohydrodynamic flow patterns in a narrow electrostatic precipitator with longitudinal or transverse wire electrode. J. Electrostat. 67, 123–127 (2009)

    Article  CAS  Google Scholar 

  27. Podliński, J., Dekowski, J., Mizeraczyk, J., Brocilo, D., Chang, J.-S.: Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency. J. Electrostat. 64, 259–262 (2006)

    Article  Google Scholar 

  28. Sander, S., Fritsching, U.: “Analyse der Bewegung von Partikelkollektiven im Elektroabscheider mittels PIV (ProcessNet annual meeting), pp. 1588–1589. Aachen, Germany (2014)

    Google Scholar 

  29. Al-Hamouz, Z.: Numerical and experimental evaluation of fly ash collection efficiency in electrostatic precipitators. Energy Convers. Manag. 79, 487–497 (2014)

    Article  Google Scholar 

  30. Liu, Q., Zhang, S.-S., Chen, J.-P.: Numerical analysis of charged particle collection in wire-plate ESP. J. Electrostat. 74, 56–65 (2015)

    Article  Google Scholar 

  31. McLean, K.J.: Electrostatic precipitation. IEEE Rev. 135, 347–361 (1987)

    Google Scholar 

  32. Adamiak, K., Atten, P.: Simulation of corona discharge in point–plane configuration. J. Electrostat. 61, 85–98 (2004)

    Article  Google Scholar 

  33. Skorych, V., Dosta, M., Hartge, E.-U., Heinrich, S.: Novel system for dynamic flowsheet simulation of solids processes. Powder Technol. 314, 665–679 (2017)

    Article  CAS  Google Scholar 

  34. Sander, S., Gawor, S., Fritsching, U.: Separating polydisperse particles using electrostatic precipitators with wire and spiked-wire discharge electrode design. Particuology (2017)

    Google Scholar 

  35. Cooperman, P.: A theory for space-charge-limited currents with application to electrical precipitation. Trans. Am. Inst. Electr. Eng. Part I Commun. Electron. 79, 47–50 (1960)

    Google Scholar 

  36. Yamamoto, T., Mieno, M., Shibata, K., Sakai, K.: Studies of rapping reentrainment from electrostatic precipitators. In: Proceedings of 7th International Conference on Electrostatic Precipitation, pp. 163–170 (1998)

    Google Scholar 

  37. Londershausen, T.T.: Entwicklung von Prognosefunktionen zur Abschätzung der Staubungsneigung von trockenen und feuchten Schüttgütern. Dr.-Ing., Faculty of Mechanical Engineering and safety technology, Bergische Universität Wuppertal, Shaker Verlag, Aachen (2018)

    Google Scholar 

  38. Shnapp, R., Liberzon, A.: A comparative study and a mechanistic picture of resuspension of large particles from rough and smooth surfaces in vortex-like fluid flows. Chem. Eng. Sci. 131, 129–137 (2015)

    Article  CAS  Google Scholar 

  39. Henry, C., Minier, J.-P.: A stochastic approach for the simulation of particle resuspension from rough substrates: Model and numerical implementation. J. Aerosol Sci. 77, 168–192 (2014)

    Article  CAS  Google Scholar 

  40. Schlichting, H.: Boundary-Layer Theory, 8th edn. Springer Verlag, Heidelberg (2000)

    Book  Google Scholar 

  41. Tsai, R., Mills, A.: A model of particle re-entrainment in electrostatic precipitators. J. Aerosol Sci. 26, 227–239 (1995)

    Article  CAS  Google Scholar 

  42. Yang, S., Dong, K., Zou, R., Yu, A., Guo, J.: Packing of fine particles in an electrical field. Granular Matter 15 (2013)

    Google Scholar 

  43. Ouchiyama, N., Tanaka, T.: Porosity estimation for random packings of spherical particles. Ind. Eng. Chem. Fundam. 23, 490–493 (1984)

    Article  CAS  Google Scholar 

  44. Londershausen, T., Schmidt, E., Sander, S., Fritsching, U.: Characterization of powder layer dustiness—influence of the deposit thickness. Chem. Eng. Technol. 40, 1720–1725 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Fritsching .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sander, S., Buss, L., Fritsching, U. (2020). Process Modeling for Dynamic Disperse Particle Separation and Deposition Processes. In: Heinrich, S. (eds) Dynamic Flowsheet Simulation of Solids Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45168-4_1

Download citation

Publish with us

Policies and ethics