Skip to main content

Combining the Kalman Filter and Particle Filter in Object Tracking to Avoid Occlusion Problems

  • Conference paper
  • First Online:
Advanced Materials

Abstract

We propose a combination of algorithms called the Kalman particle filter (KPF) that overcomes the object tracking occlusion problem in image processing while also achieving a reasonable computation time. When object occlusion occurs while using a Kalman filter (KF), we switch to the particle filter (PF) to track the object until the system is stable, and then switch back to the KF. We compared the results of running each algorithm (KF, PF, and KPF), independently, executed 30 times; the tracking performance was evaluated using six different methods. We found that KPF successfully addressed the occlusion problem, providing accurate estimates using highly efficient operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.-L. Tian, M. Lu, A. Hampapur., in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (2005)

    Google Scholar 

  2. J. Zhu, Y. Lao, Y.F. Zheng, IEEE Trans. Circuits Syst. Video Technol. 20(2), 223–235 (2009)

    Article  Google Scholar 

  3. R. Vullings, B. De Vries, J.W. Bergmans, IEEE Trans. Biomed. Eng. 58(4), 1094–1103 (2010)

    Article  Google Scholar 

  4. E. Maggio, F. Smerladi, A. Cavallaro, IEEE Trans. Circuits Syst. Video Technol. 17(10), 1348–1359 (2007)

    Article  Google Scholar 

  5. A. Jazayeri et al., IEEE Trans. Intell. Transp. Syst. 12(2), 583–595 (2011)

    Article  Google Scholar 

  6. T. Xiong, C. Debrunner, IEEE Trans. Intell. Transp. Syst. 5(4), 324–328 (2004)

    Article  Google Scholar 

  7. D. Comaniciu, V. Ramesh, P. Meer., in Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662) (2000)

    Google Scholar 

  8. J.L. Barron, D.J. Fleet, S.S. Beauchemin, Int. J. Comput. Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  9. A. Czyzewski, P. Dalka., in 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services (2008)

    Google Scholar 

  10. M.Z. Islam, C.-M. Oh, C.-W. Lee, Int. J. Signal Process., Image Process. Pattern, 2(1) (2009)

    Google Scholar 

  11. T. Zhang, et al., in 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA) (2008)

    Google Scholar 

  12. J. Wang, et al., in 2010 2nd International Conference on Advanced Computer Control (2010)

    Google Scholar 

  13. X. Li, et al., in The 2010 IEEE International Conference on Information and Automation (2010)

    Google Scholar 

  14. N. Peterfreund, IEEE Trans. Pattern Anal. Mach. Intell. 21(6), 564–569 (1999)

    Google Scholar 

  15. Y. Wu, T.S. Huang, Int. J. Comput. Vision 58(1), 55–71 (2004)

    Article  Google Scholar 

  16. M. Isard, A. Blake, Int. J. Comput. Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  17. C. Yang, R. Duraiswami, L. Davis, in Tenth IEEE International Conference on Computer Vision (ICCV’05), 1 (2005)

    Google Scholar 

  18. J.S. Liu, R. Chen, J. Am. Stat. Assoc. 93(443), 1032–1044 (1998)

    Article  Google Scholar 

  19. S. Maskell, N. Gordon, Target Tracking: Algorithms and Applications (Ref. No. 2001/174), IEE, 2, 21–215 (2001)

    Google Scholar 

  20. X. Fu, Y. Jia, IEEE Trans. Signal Process. 58(10), 5414–5420 (2010)

    Article  Google Scholar 

  21. X. Fu, et al., in Proceedings of the 2010 American Control Conference (2010)

    Google Scholar 

  22. N. Bouaynaya, D. Schonfeld, IEEE Trans. Circuits Syst. Video Technol. 19(7), 1068 (2009)

    Article  Google Scholar 

  23. A. Abdel-Hadi, in The 2010 International Conference on Computer Engineering and Systems (2010)

    Google Scholar 

  24. P. Chen et al., IET Image Proc. 5(5), 440–447 (2011)

    Article  Google Scholar 

  25. T. Xiong, C. Debrunner., in International Conference on Computer Analysis of Images and Patterns (2003)

    Google Scholar 

  26. S. Nigam, A. Khare, IET Comput. Vision 6(3), 231–251 (2012)

    Article  Google Scholar 

  27. A. Ichigaya et al., IEEE Trans. Circuits Syst. Video Technol. 16(2), 251–259 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jia-Yu Chen and Jung-Ting Hsieh for editing technical supports. This study was supported financially, in part, by grant from MOST-107-2221-E-992-014-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsair-Fwu Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lan, JH. et al. (2020). Combining the Kalman Filter and Particle Filter in Object Tracking to Avoid Occlusion Problems. In: Parinov, I., Chang, SH., Long, B. (eds) Advanced Materials. Springer Proceedings in Materials, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-45120-2_47

Download citation

Publish with us

Policies and ethics