Skip to main content

X-ray Spectroscopy Study of the Atomic and Electronic Structure of Polyacrylonitrile-Based Nanocomposites at Different Stages of Formation

  • Conference paper
  • First Online:
Advanced Materials

Abstract

Study the atomic and electronic structure of polyacrylonitrile (PAN) during IR-annealing and the formation of Co/PAN nanocomposite based on a combination of computer simulation methods and X-ray absorption spectroscopy was carried out. Using the Density Functional Theory method, structural models of pure PAN and Co/PAN nanocomposite were obtained and electronic density of states was calculated. X-ray absorption spectra for the obtained structural models were calculated and showed good agreement with the experiment. The densities of states demonstrated that polymer form changes from non-conducting to conducting during annealing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.G. Muratova, E.V. Yakushko, L.V. Kozhitov, A.V. Popkova, M.A. Pushkarev. Mod. Electron. Mater. 2, 70 (2016)

    Google Scholar 

  2. T.A. Bednaya, S.P. Konovalenko, Russ. Microelectron. 47, 112 (2018)

    Google Scholar 

  3. E.A. Stefanescu, C. Daranga, C. Stefanescu, Materials 2, 2095 (2009)

    Google Scholar 

  4. G. Tourillon, D. Guay, A. Fontaine. Faraday Discuss. Chem. Soc. 89, 275 (1990)

    Google Scholar 

  5. Z. Jiang, Y. Liu, G. Zeng, W. Xu, B. Zheng, X. Tana, S. Wang. RSC Adv. 5, 25389 (2015)

    Google Scholar 

  6. C. Ehlert, W.E.S. Unger, P. Saalfrank, C. Phys. Chem. Chem. Phys. 16, 14083 (2014)

    Google Scholar 

  7. S.G. Minasian, J.M. Keith, E.R. Batista, K.S. Boland, S.A. Kozimor, R.L. Martin, D.K. Shuh, T. Tyliszczak, L.J. Vernon. J. Am. Chem. Soc. 135, 14731 (2013)

    Google Scholar 

  8. D.R. Nascimento, A.E. DePrince, J. Phys. Chem. Lett. 8, 2951 (2017)

    Google Scholar 

  9. P.A. Denis, F. Iribarne, J. Mol. Struc-Theochem. 907, 93 (2009)

    Google Scholar 

  10. G. Bertoni, L. Calmels, Micron 37, 486 (2006)

    Google Scholar 

  11. J.P. Rueff, Y. Joly, F. Bartolome, M. Krisch, J. L. Hodeau, L. Marques, M. Mezouar, A. Kaprolat, M. Lorenzen, F. Sette. J. Phys.: Condens. Matter. 14, 11635 (2002)

    Google Scholar 

  12. M. Brzhezinskaya, V. Shmatko, G. Yalovega, A. Krestinin, I. Bushkin, E. Bogoslavskaya,  J. Electr. Spectr. Rel. Phen. 196,  99 (2014)

    Google Scholar 

  13. A. Nikitin, L.-Å. Näslund, Z. Zhang, A. Nilsson, Surf. Sci. 602, 2575 (2008)

    Google Scholar 

  14. G. te Velde, E.J. Baerends. Phys. Rev. B. 44, 7888 (1991)

    Google Scholar 

  15. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996)

    Google Scholar 

  16. O. Bunau, Y. Joly. J. Phys.: Condens. Matter. 21, 345501 (2009)

    Google Scholar 

  17. G. Yalovega, T. Semenistaya. Solid State Phenom. 257, 175 (2017)

    Google Scholar 

  18. R. Janus, P. Natkański, A. Wach et al. J. Therm. Anal. Calorim. 110, 119 (2012)

    Google Scholar 

  19. C.R. Wu, W.R. Salaneck. Synth. Met. 16, 147 (1986)

    Google Scholar 

  20. S.Y. Jin, M.H. Kima, Y.G. Jeong, Y.I. Yoon, W.H. Park. Mater. Des. 124, 69 (2017)

    Google Scholar 

  21. Q. Luo, X. Yang, X. Zhao, D. Wang, R. Yin, X. Li. J. An. Appl. Catal. B-Environ. 204, 304 (2017)

    Google Scholar 

  22. J. Wang, H.D.H. Stöver, A.P. Hitchcock, T. Tyliszczak. J. Synchrotron Rad. 14, 181 (2007)

    Google Scholar 

  23. O. Dhez, H. Ade, S.G. Urquhart, J. Electron Spectrosc. Relat. Phenom. 128, 85 (2003)

    Google Scholar 

  24. H. Ade, X. Zhang, S. Cameron, C. Costello, J. Kirz, S. Williams. Science. 258, 972 (1992)

    Google Scholar 

  25. G. Yalovega, T. Semenistaya, V. Shmatko, M. Kremennaya, N. Tsud, Radiat. Phys. Chem. (2019). https://doi.org/10.1016/j.radphyschem.2019.04.006

  26. S.K. Nataraj, K.S. Yang, T.M. Aminabhavi. Prog. Polym. Sci. 37, 487 (2012)

    Google Scholar 

  27. F.M.F. de Groot, M. Abbate, J. van Elp, G.A. Sawatzky, Y.J. Ma, C.T. Chen, F. Sette, J. Phys.: Condens. Matter 5, 2277 (1993)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Southern Federal University (Project no. VN_GR_07_2017-30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kremennaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kremennaya, M.A., Shmatko, V.A., Mikhailova, T.A., Pronina, E.V., Kosolapova, K.D., Yalovega, G.E. (2020). X-ray Spectroscopy Study of the Atomic and Electronic Structure of Polyacrylonitrile-Based Nanocomposites at Different Stages of Formation. In: Parinov, I., Chang, SH., Long, B. (eds) Advanced Materials. Springer Proceedings in Materials, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-45120-2_3

Download citation

Publish with us

Policies and ethics