Skip to main content

Finite Element Investigation of Effective Moduli of Transversely Isotropic Thermoelastic Materials with Nanoscale Porosity

  • Conference paper
  • First Online:
Advanced Materials

Part of the book series: Springer Proceedings in Materials ((SPM,volume 6))

  • 586 Accesses

Abstract

Using the methods of effective moduli and finite elements, the effective properties of nanoporous thermoelastic transversely isotropic materials were studied for simple random and for closed structures of porosity. Nanoscale effects were modelled in the framework of the Gurtin-Murdoch model of interface stresses and of the high conductivity model. The modelling and solution of homogenization problems was performed in the ANSYS package, while structures of representative volumes with closed porosity were created in the ACELAN-COMPOS package. The effect of porosity, types of representative volumes and pore sizes on the values of the effective modules of nanoporous titanium is analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.A. Eremeyev, Acta Mech. 227, 29 (2016)

    Article  Google Scholar 

  2. J.C. Hamilton, W.G. Wolfer, Surf. Sci. 603, 1284 (2009)

    Article  CAS  Google Scholar 

  3. J. Wang, Z. Huang, H. Duan, S. Yu, X. Feng, G. Wang, W. Zhang, T. Wang, Acta Mech. Solida Sin. 24(1), 52 (2011)

    Article  CAS  Google Scholar 

  4. K.F. Wang, B.L. Wang, T. Kitamura, Acta. Mech. Sin. 32(1), 83 (2016)

    Article  Google Scholar 

  5. M.E. Gurtin, A.I. Murdoch, Arch. Ration. Mech. Anal. 57, 291 (1975)

    Article  Google Scholar 

  6. M.E. Gurtin, A.I. Murdoch, Int. J. Solids Struct. 14(6), 431 (1978)

    Article  Google Scholar 

  7. A.I. Murdoch, Q. J. Mech. Appl. Math. 29, 245 (1976)

    Google Scholar 

  8. G. Chatzigeorgiou, A. Javili, P. Steinmann, Math. Mech. Solids. 20, 130 (2015)

    Article  Google Scholar 

  9. H.L. Duan, J. Wang, Z.P. Huang, B.L. Karihaloo, J. Mech. Phys. Solids 53, 1574 (2005)

    Article  Google Scholar 

  10. A. Javili, P. Steinmann, J. Mosler, Comput. Methods Appl. Mech. Engrg. 317, 274 (2017)

    Article  Google Scholar 

  11. H. Le Quang, Q.-C. He, Mech. Mater. 40, 865 (2008)

    Article  Google Scholar 

  12. H. Le Quang, T.-L. Phan, G. Bonnet, Int. J. Therm. Sci. 50, 1428 (2011)

    Article  Google Scholar 

  13. H. Le Quang, D.C. Pham, G. Bonnet, Q.-C. He, Int. J. Heat Mass. Transf. 58, 175 (2013)

    Article  Google Scholar 

  14. S. Graham, D.L. McDowell, J. Heat Transfer 125(3), 389 (2003)

    Article  Google Scholar 

  15. V.I. Kushch, I. Sevostianov, V.S. Chernobai, Int. J. Eng. Sci. 83, 146 (2014)

    Article  Google Scholar 

  16. H. Le Quang, Int. J. Heat Mass. Transf. 95, 162 (2016)

    Article  Google Scholar 

  17. J.T. Liu, S.T. Gu, E. Monteiro, Q.-C. He, Comput. Mech. 53, 825 (2014)

    Article  Google Scholar 

  18. L. Wu, Int. J. Eng. Sci. 48, 783 (2010)

    Article  Google Scholar 

  19. J. Xiao, Y. Xu, F. Zhang, Compos. Struct. 189, 553 (2018)

    Article  Google Scholar 

  20. T. Chen, G.J. Dvorak, C.C. Yu, Int. J. Solids Struct. 44(3–4), 941 (2007)

    Article  Google Scholar 

  21. H.L. Duan, B.L. Karihaloo, J. Mech. Phys. Solids 55(5), 1036 (2007)

    Article  CAS  Google Scholar 

  22. H. Le Quang, Q.-C. He, J. Mech. Phys. Solids 55, 1889 (2007)

    Article  Google Scholar 

  23. H. Le Quang, Q.-C. He, Arch. Appl. Mech. 79, 225 (2009)

    Article  Google Scholar 

  24. A. Javili, P. Steinmann, Int. J. Solids Struct. 47(24), 3245 (2010)

    Article  Google Scholar 

  25. A. Javili, P. Steinmann, Comput. Methods Appl. Mech. Eng. 200(21–22), 1963 (2011)

    Article  Google Scholar 

  26. A. Javili, A. McBride, P. Steinmann, Appl. Mech. Rev. 65(1), 010802 (2013)

    Article  Google Scholar 

  27. A.V. Nasedkin, A.A. Nasedkina, A.S. Kornievsky, A.I.P. Conf, Proc. 1798, 020110 (2017)

    Google Scholar 

  28. A.V. Nasedkin, A.A. Nasedkina, A.S. Kornievsky, in Coupled Problems 2017—Proceedings of VII International Conference on Coupled Problems in Science and Engineering, 12-14 June 2017, Rhodes Island, Greece. ed. by M. Papadrakakis, E. Oñate, B.A. Schreflers, CIMNE, vol. 1140, (Barcelona, Spain, 2017)

    Google Scholar 

  29. A. Nasedkin, A. Nasedkina, A. Rajagopal, in Advanced Materials—Proceedings of International Conference on Physics and Mechanics of New Materials and Their Applications, PHENMA 2018. Springer Proceedings in Physics, ed. by I.A. Parinov, S.-H. Chang, Y-H. Kim, vols. 224, 399, (Springer, Berlin, 2019)

    Google Scholar 

  30. A.A. Nasedkina, A. Rajagopal, Mater. Phys. Mech. 37, 34 (2018)

    CAS  Google Scholar 

  31. A.B. Kudimova, I.V. Mikhayluts, D.K. Nadolin, A.V. Nasedkin, A.A. Nasedkina, P.A. Oganesyan, A.N. Soloviev, Procedia Struct. Integrity 6, 301 (2017)

    Article  Google Scholar 

  32. N.V. Kurbatova, D.K. Nadolin, A.V. Nasedkin, P.A. Oganesyan, A.N. Soloviev, in Analysis and Modelling of Advanced Structures and Smart Systems. Advanced Structured Materials, ed. by H. Altenbach, E. Carrera, G. Kulikov, vol. 81, (Springer, Berlin, 2018), p. 69

    Google Scholar 

  33. A.B. Kudimova, D.K. Nadolin, A.V. Nasedkin, P.A. Oganesyan, A.N. Soloviev, Mater. Phys. Mech. 37(1), 25 (2018)

    Google Scholar 

  34. H.L. Duan, J. Wang, B.L. Karihaloo, Z.P. Huang, Acta Mater. 54, 2983 (2006)

    Article  CAS  Google Scholar 

  35. V. Eremeyev, N. Morozov, Dokl. Phys. 55(6), 279 (2010)

    Article  CAS  Google Scholar 

  36. A.V. Nasedkin, A.S. Kornievsky, Comput. Continuum Mech. 10, 375 (2017). (In Russian)

    Article  Google Scholar 

  37. A.V. Nasedkin, A.S. Kornievsky, in Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Advanced Structured Materials, ed. by M.A. Sumbatyan, vol. 59, 107, (Springer, Berlin, 2017)

    Google Scholar 

Download references

Acknowledgements

The work was done in the framework of the Ministry of Science and Higher Education of Russia project No. 9.1001.2017/4.6 in part of the analysis of algorithms for creating granular composite structures and in the framework of the RFBR project 16-58-48009 IND_omi and DST in part of analyzing the effective properties of nanostructured porous thermoelastic composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Nasedkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nasedkin, A., Nasedkina, A., Rajagopal, A. (2020). Finite Element Investigation of Effective Moduli of Transversely Isotropic Thermoelastic Materials with Nanoscale Porosity. In: Parinov, I., Chang, SH., Long, B. (eds) Advanced Materials. Springer Proceedings in Materials, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-45120-2_27

Download citation

Publish with us

Policies and ethics