Skip to main content

Optimization of Surface Roughness and Vibration During Thermal—Assisted Milling SKD11 Steel Using Taguchi Method

  • Conference paper
  • First Online:
Advanced Materials

Part of the book series: Springer Proceedings in Materials ((SPM,volume 6))

Abstract

This chapter used the Taguchi experimental design method in order to study the surface roughness and vibration during thermal-assisted milling of SKD11 steel. The effect of cutting parameters such as cutting speed, feed rate, cutting depth and support elevated temperatures on the output data were evaluated. Multi-objective optimization for minimum both surface roughness and vibration was also estimated to improve the cutting process. The optimal set of control parameters to achieve the minimum of surface roughness and vibration amplitude could be obtained as Vc = 280 m/min, f = 230 mm/min, t = 0.5 mm, T = 400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Gurav, P. R. B, S. Patil, Int. J. Eng. 4(2), 55–61 (2016)

    Google Scholar 

  2. A.K.M.N. Amin, M. Abdelgadir, J. Manuf. Sci. Eng. Trans. ASME 125(4), 674–680 (2003)

    Article  Google Scholar 

  3. K.M.A. Lajis, A.K.M.N. Amin, A.N.M. Am, J. Eng. Appl. Sci. 2, 421–427 (2009)

    Article  Google Scholar 

  4. M. Baili, V. Wagner, G. Dessein, J. Sallaberry, D. Lallement, Appl. Mech. Mater. 62, 67–76 (2011)

    Article  CAS  Google Scholar 

  5. A. Amin, N.V. Talantov, Mech. Eng. Res. Bull. 9, 52–62 (1986)

    Google Scholar 

  6. M. Thi-Bich, D. Van-Chien, B. Tien-Long, N. Duc-Toan, Metals (Basel) 8(12) (2018)

    Google Scholar 

  7. G. Madhavulu, B. Ahmed, J. Mater. Process. Tech. 44(3–4), 199–206 (1994)

    Article  Google Scholar 

  8. Z.Y. Wang, K.P. Rajurkar, J. Fan, S. Lei, Y.C. Shin, G. Petrescu, Int. J. Mach. Tools Manuf 43(13), 1391–1396 (2003)

    Article  Google Scholar 

  9. P. Dumitrescu, P. Koshy, J. Stenekes, M.A. Elbestawi, Int. J. Mach. Tools Manuf 46(15), 2009–2016 (2006)

    Article  Google Scholar 

  10. B. Shi, H. Attia, R. Vargas, S. Tavakoli, Mach. Sci. Technol. 12(4), 498–513 (2008)

    Article  CAS  Google Scholar 

  11. M.J. Bermingham, P. Schaffarzyk, S. Palanisamy, M.S. Dargusch, Int. J. Adv. Manuf. Technol. 74(9–12), 1487–1494 (2014)

    Article  Google Scholar 

  12. R. Makwana, H. Prajapati, Int. Conf. Multidiscip. Res. Pract. I(Viii), 488–489 (2014)

    Google Scholar 

  13. L. Özler, A. Inan, C. Özel, Int. J. Mach. Tools Manuf 41(2), 163–172 (2001)

    Article  Google Scholar 

  14. T.L. Ginta, A.K.M.N. Amin, Int. J. Mach. Mach. Mater. 14(2), 194–212 (2013)

    Google Scholar 

  15. N. S. Kumar, A. Shetty, A. Shetty, K. Ananth, H. Shetty, Procedia Eng. 38(Icmoc), 691–697 (2012)

    Google Scholar 

  16. A.K.M.N. Amin, M.H.B.M. Saad, M.D. Arif, Adv. Mater. Res. 538–541, 799–803 (2012)

    Article  Google Scholar 

  17. C.W. Chang, C.P. Kuo, Int. J. Mach. Tools Manuf 47(1), 141–147 (2007)

    Article  Google Scholar 

  18. T.-B. Mac, V.-C. Dinh, T.-L. Banh, D.-T. Nguyen, Metals. 8, 992 (2018)

    Article  Google Scholar 

  19. P. Thi-Hoa, M. Thi-Bich, T. Van-Canh, B. Tien-Long, N. Duc-Toan, Int. J. Adv. Manuf. Technol. (2017). https://doi.org/10.1007/s00170-017-1063-x

    Article  Google Scholar 

  20. T.-H. Pham, T.-B. Mac, V.-C. Tong, T.-L. Banh, D.-T. Nguyen, Adv. Mech. Eng. 8(10), 168781401667329 (2016). https://doi.org/10.1177/1687814016673297

    Article  CAS  Google Scholar 

  21. C. Wang, Y. Xie, L. Zheng, Z. Qin, D. Tang, Y. Song, Int. J. Mach. Tools Manuf 79, 31–48 (2014)

    Article  Google Scholar 

  22. C. Wang, F. Ding, D. Tang, L. Zheng, S. Li, Y. Xie, Int. J. Mach. Tools Manuf 108, 13–26 (2016)

    Article  Google Scholar 

  23. S. Du, M. Chen, L. Xie, Z. Zhu, X. Wang, Adv. Mech. Eng. 8(10), 1–12 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.02-2019.300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Toan Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mac, TB., Long, B.T., Nguyen, DT. (2020). Optimization of Surface Roughness and Vibration During Thermal—Assisted Milling SKD11 Steel Using Taguchi Method. In: Parinov, I., Chang, SH., Long, B. (eds) Advanced Materials. Springer Proceedings in Materials, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-45120-2_23

Download citation

Publish with us

Policies and ethics