Skip to main content

Noninvasive Risk Stratification for Sudden Cardiac Death

  • Chapter
  • First Online:
  • 901 Accesses

Abstract

Sudden cardiac death (SCD) accounts for approximately 350,000 people per year in the USA alone and is the leading cause of death in the Western world. Risk stratification for SCD is highly desirable for the simple reason that preventative strategies can be readily applied prospectively to a “high-risk” population affecting their outcome. In this chapter, risk assessment in the asymptomatic population; the role of various noninvasive and invasive tests for risk stratification in patients with structural heart disease; and the role of ejection fraction, biochemical markers, cardiac magnetic resonance imaging (CMR), and genetic-based risk stratification are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benjamin EJ, Virani SK, Callaway CW, et al. AHA statistical update. Heart disease and stroke statistics 2018 update. A report from the American Heart Association. Circulation. 2018;137:e67–e492.

    Article  PubMed  Google Scholar 

  2. Jouven X, Empana JP, Schwartz PJ, et al. Heart rate profile during exercise as a predictor of sudden death. N Engl J Med. 2005;352:1951–8.

    Article  CAS  PubMed  Google Scholar 

  3. Jouven X, Empana JP, Escolano S, et al. Relation of heart rate at rest and long-term (20 years) death rate in initially healthy middle-aged men. Am J Cardiol. 2009;103:279–83.

    Article  PubMed  Google Scholar 

  4. Jouven X, Schwartz PJ, Escolano S, et al. Excessive heart rate increase during mild mental stress in preparation for exercise predicts sudden death in the general population. Eur Heart J. 2009;30:1703–10.

    Article  PubMed  Google Scholar 

  5. Greenland P, Daviglus ML, Dyer AR, et al. Resting heart rate is a risk factor for cardiovascular and noncardiovascular mortality: the Chicago Heart Association Detection Project in industry. Am J Epidemol. 1999;149:853–62.

    Article  CAS  Google Scholar 

  6. Straus SMJM, Kors JA, De Bruin ML, et al. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J Am Coll Cardiol. 2006;47:362–7.

    Article  PubMed  Google Scholar 

  7. Tikkanen JT, Anttonen O, Junttila MJ, et al. Long-term outcome associated with early repolarization on electrocardiography. N Engl J Med. 2009;361:2529–37.

    Article  CAS  PubMed  Google Scholar 

  8. Lloyd-Jones DM, Wilson PW, Larson MG. Framingham risk score and prediction of life time risk for coronary artery disease. Am J Cardiol. 2004;94:20–4.

    Article  PubMed  Google Scholar 

  9. Laslett LJ, Alagona P, Clark BA III, et al. The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol. 2012;60(Suppl. S):1–49.

    Article  Google Scholar 

  10. Lown B, Wolf M. Approaches to sudden death from coronary artery disease. Circulation. 1971;44:130–42.

    Article  CAS  PubMed  Google Scholar 

  11. Kotler MN, Tabatznik B, Mower MM, Tominaga S. Prognostic significance of ventricular ectopic beats with respect to sudden death in the late post-infarction period. Circulation. 1973;47:959.

    Article  CAS  PubMed  Google Scholar 

  12. Vismara LA, Amsterdam EA, Mason DT. Relation of ventricular arrhythmia in the late hospital phase of acute myocardial infarction to sudden death after hospital discharge. Am J Med. 1975;59:6.

    Article  CAS  PubMed  Google Scholar 

  13. Moss AJ, Davis HT, De Camilla J, Bayer LW. Ventricular ectopic beats and their relation to sudden death and non-sudden cardiac death after myocardial infarction. Circulation. 1979;60:998.

    Article  CAS  PubMed  Google Scholar 

  14. Vismara LA, Vera Z, Foerster J, Amsterdam EA, Mason DT. Identification of sudden death risk factors in acute and chronic coronary artery disease. Am J Cardiol. 1977;39:822.

    Google Scholar 

  15. Bigger JT, Webb FM, Rolnitzky LM. Prevalence, characteristics and significance of ventricular tachycardia (three or more complexes) detected with ambulatory electrocardiographic recording in the late hospital phase of acute myocardial infarction. Am J Cardiol. 1981;48:815.

    Article  PubMed  Google Scholar 

  16. Ruberman W, Weinblat E, Goldberg JD, Frank CW, Chaudhary BC, Shapiro S. Ventricular premature complexes and sudden death after myocardial infarction. Circulation. 1981;64:297.

    Article  CAS  PubMed  Google Scholar 

  17. Calif RM, McKinnis RA, Burke J, et al. Prognostic implications of ventricular arrhythmias during 24 hour ambulatory monitoring in patients undergoing cardiac catheterization for coronary artery disease. Am J Cardiol. 1982;50:23.

    Article  Google Scholar 

  18. Schulze RA Jr, Rouleau J, Rico P, et al. Ventricular arrhythmias in the late hospital phase of acute myocardial infarction. Relation to left ventricular function detected by gated cardiac blood pool scanning. Circulation. 1975;52:1006–11.

    Article  PubMed  Google Scholar 

  19. Schulze RA, Strauss HW, Pit B. Sudden death in the year following myocardial infarction: relation to ventricular premature contractions in the late hospital phase and left ventricular ejection fraction. Am J Med. 1977;62:192.

    Article  PubMed  Google Scholar 

  20. The Multicenter Post Infarction Research Group. Risk stratification and survival after myocardial infarction. N Engl J Med. 1983;309:331–6.

    Article  Google Scholar 

  21. Gomes JAC, Hariman RI, Kang PS, et al. Programmed electrical stimulation in patients with high-grade ventricular ectopy: electrophysiologic findings and prognosis for survival. Circulation. 1984;70:43–51.

    Article  CAS  PubMed  Google Scholar 

  22. Buxton AE, Marchlinski FE, Flores BT, et al. Non-sustained ventricular tachycardia in patients with coronary artery disease: role of electrophysiologic study. Circulation. 1987;75:1178–85.

    Article  CAS  PubMed  Google Scholar 

  23. Wilbur DJ, Olshansky B, Noran JF, et al. Electrophysiological testing and non-sustained ventricular tachycardia: use and limitations in patients with coronary artery disease and impaired left ventricular function. Circulation. 1990;82:350–8.

    Article  Google Scholar 

  24. Buxton AE, Lee KL, DiCarlo L, et al. Electrophysiologic testing to identify patients with coronary artery disease who are at risk for sudden death. N Engl J Med. 2000;342:1937–45.

    Article  CAS  PubMed  Google Scholar 

  25. Moss AJ, Hall WJ, Cannom DS, Daubert JP, Higgins SL, Klein H, Multicenter Automatic Defibrillator Implantation Trial Investigators, et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. N Engl J Med. 1996;335:1933–40. [PMID: 8960472].

    Article  CAS  PubMed  Google Scholar 

  26. Berbari EJ. A non-invasive technique for recording the depolarization of the heart’s electrical conduction system. Master’s Thesis. University of Miami, Coral Gables, Florida 1973.

    Google Scholar 

  27. Berbari EJ, Lazarra R, Samet P, et al. Non-invasive technique for detection of electrical activity during the P-R segment. Circulation. 1963;48:1005.

    Article  Google Scholar 

  28. Flowers NC, Horan LG. His bundle and bundle branch recordings from the body-surface. Circulation. 1973;48(suppl IV):102.

    Google Scholar 

  29. Flowers NC, Hand RC, Orander PC, et al. Surface recording of electrical activity from the region of the his bundle. Am J Cardiol. 1974;l33:384.

    Article  Google Scholar 

  30. Boineau JP, Cox JL. Slow ventricular activation in acute myocardial infarction. A source of reentrant premature ventricular contractions. Circulation. 1978;40:702.

    Google Scholar 

  31. Waldo AL, Kaiser GA. Study of ventricular arrhythmias associated with acute myocardial infarction in the canine heart. Circulation. 1973;47:1222.

    Article  CAS  PubMed  Google Scholar 

  32. Scherlag BJ, El-Sgerif N, Hope R, Lazzara R. Characterization and localization of ventricular arrhythmias resulting from myocardial ischemia and infarction. Circ Res. 1974;35:372.

    Article  CAS  PubMed  Google Scholar 

  33. El-Sherif N, Scherlag BJ, Lazzara R, Hope R. Reentrant ventricular arrhythmias in the late myocardial infarction period I. Conduction characteristics in the infarction zone. Circulation. 1977;56:225.

    Article  CAS  PubMed  Google Scholar 

  34. Wit AL, Allessie MA, Bonke FIM, et al. Electrophysiological mapping to determine the mechanism of experimental ventricular tachycardia initiated by premature impulses. Experimental approach and initial results demonstrating reentrant excitation. Am J Cardiol. 1982;49:166–85.

    Article  CAS  PubMed  Google Scholar 

  35. Mehra R, Zeiler RH, Gough WB, El-Sherif N. Reentrant ventricular arrhythmias in the late myocardial infarction period 9. Electrophysiologic-anatomic correlation of reentrant circuits. Circulation. 1983;67:11–24.

    Article  CAS  PubMed  Google Scholar 

  36. El-Sherif N, Gough WB, Zeiler RH, Hariman R. Reentrant ventricular arrhythmias in the late myocardial infraction period. 12. Spontaneous versus induced reentry and intramural versus epicardial circuits. J Am Coll Cardiol. 1985;6:124–32.

    Article  CAS  PubMed  Google Scholar 

  37. Josephson ME, Horowitz LN, Farshidi A. Continuous local electrical activity. A mechanism of recurrent ventricular tachycardia. Circulation. 1978;57:659–65.

    Article  CAS  PubMed  Google Scholar 

  38. Berbari EJ, Scherlag BJ, Hope R, Lazzara R. Recording from the body surface of arrhythmogenic ventricular activity during the ST segment. Am J Cardiol. 1978;41:697.

    Article  CAS  PubMed  Google Scholar 

  39. Fontain G, Gallais-Hamonoo F, Frank R, et al. High amplification electrocardiography in cardiac arrhythmias and conduction defects. In: Verenne A, editor. High amplification electrocardiography. Nice: JM Vidalm Crenaf; 1980.

    Google Scholar 

  40. Simson MB. Use of signals in the terminal QRS complex to identify patients with ventricular tachycardia after myocardial infarction. Circulation. 1982;64:225.

    Google Scholar 

  41. Breithardt G, Borggrefe M, Schwarzmaier J, Karhenn U, Yeh HL, Seipel L. Clinical significance of ventricular late potentials. In: Rombach V, Hilger HH, editors. Signal averaging technique in clinical cardiology. Stuttgart/New York: Schattauer Verlag Publication; 1981. p. 219.

    Google Scholar 

  42. Rozanski JJ, Mortara D. Delayed depolarization in patients with recurrent ventricular tachycardia and left ventricular aneurysm. In: Rombach V, Hilger HH, editors. Signal averaging technique in clinical cardiology. Stuttgart/New York: F.K. Schattauer Verlag Publication; 1981. p. 205.

    Google Scholar 

  43. Breithardt G, Becker R, Seipel L, Abendroth RR, Ostermeyer J. Noninvasive detection of late potentials in man. A new marker for ventricular tachycardia. Eur Heart J. 1981;2:1.

    Article  CAS  PubMed  Google Scholar 

  44. Breithardt G, Borggrefe M, Karbenn D, et al. Prevalence of late potentials in patients with and without ventricular tachycardia: correlation with angiographic findings. Am J Cardiol. 1982;49:1932.

    Article  CAS  PubMed  Google Scholar 

  45. Gomes JA, Mehra R, Barreca P, et al. Quantitative analysis of the high-frequency components of signal-averaged QRS complex in patients with acute myocardial infarction: a prospective study. Circulation. 1985;72:105.

    Article  CAS  PubMed  Google Scholar 

  46. Breithardt G, Broggrefe M, Haerten K, Trampisch HGJ. Prognostic significance of programmed ventricular stimulation and non-invasive detection of ventricular late potentials in the post-infarction period. Z Kardiol. 1985;74:389.

    CAS  PubMed  Google Scholar 

  47. Denniss AR, Richard DA, Cody DV, et al. Prognostic significance of ventricular tachycardia and fibrillation induced at programmed stimulation and delayed potentials detected on the signal-averaged electrocardiograms of survivors of acute myocardial infarction. Circulation. 1986;74:731.

    Article  CAS  PubMed  Google Scholar 

  48. Denes P, Santarelli P, Hauser RG, Uretz UF. Quantitative analysis of the high frequency components of the terminal portion of the body surface QRS in normal subjects and in patients with ventricular tachycardia. Circulation. 1982;67:1129.

    Article  Google Scholar 

  49. Gomes JA, Winters SL, Stewart D, et al. Optimal band pass filters or time-domain analysis of the signal-averaged electrocardiogram. Am J Cardiol. 1987;60:1290.

    Article  CAS  PubMed  Google Scholar 

  50. Winters SL, Stewart D, Targonski A, Gomes JA. Role of signal averaging of the surface QRS complex in selecting patients with nonsustained ventricular tachycardia and high-grade ventricular arrhythmias for programmed ventricular stimulation. J Am Coll Cardiol. 1988;12:1481–7.

    Article  CAS  PubMed  Google Scholar 

  51. Gomes JA, Winters SL, Ip J. Signal averaging of the surface QRS complex: practical applications. J Cardiovasc Electrophysiol. 1999;2:316.

    Article  Google Scholar 

  52. Simson MB, Untereker WJ, Spielman SR, et al. Relations between late potentials on the body surface and directly recorded fragmented electrograms in patients with ventricular tachycardia. Am J Cardiol. 1983;57:105.

    Article  Google Scholar 

  53. Marcus NH, Falcone RA, Harken AH, et al. Body surface late potentials: effects of endocardial resection in patients with ventricular tachycardia. Circulation. 1984;70:632.

    Article  CAS  PubMed  Google Scholar 

  54. Kanovsky MS, Falcone RA, Dresden CA, et al. Identification of patients with ventricular tachycardia after myocardial infarction: signal-averaged electrocardiogram, Holter monitoring and cardiac catheterization. Circulation. 1984;79:264.

    Article  Google Scholar 

  55. Kuchar L, Thorburn CW, Sammel NL. Late potentials detected after myocardial infarction: natural history and prognostic significance. Circulation. 1987;74:1280.

    Article  Google Scholar 

  56. Gomes JA, Winters SL, Stewart D, et al. A new noninvasive index to predict sustained ventricular tachycardia and sudden death in the first year after myocardial infarction: based on signal-averaged electrocardiogram, radionuclide ejection fraction and Holter monitoring. J Am Coll Cardiol. 1987;10:349.

    Article  CAS  PubMed  Google Scholar 

  57. Zimmerman M, Adamec R, Simonin P, et al. Prognostic significance of ventricular late potentials in coronary artery disease. Am Heart J. 1985;109:725.

    Article  Google Scholar 

  58. Freedman RA, Gillis AM, Keren AM, et al. Signal averaged electrocardiogram late potentials in patients with ventricular fibrillation or ventricular tachycardia: correlation with clinical arrhythmias and electrophysiologic study. Am J Cardiol. 1985;55:1350.

    Article  CAS  PubMed  Google Scholar 

  59. Nalos PC, Gang ES, Mandel WJ. The signal-averaged electrocardiogram as a screening test for inducibility of sustained ventricular tachycardia in high risk patients: a prospective study. J Am Coll Cardiol. 1987;9:539.

    Article  CAS  PubMed  Google Scholar 

  60. Buckingham TA, Ghosh S, Homan SM, et al. Independent value of signal averaged electrocardiography and left ventricular function in identifying patients with sustained ventricular tachycardia with coronary artery disease. Am J Cardiol. 1987;159:568.

    Article  Google Scholar 

  61. Buckingham TA, Thessen CC, Stevens LL, Redd RM, Kennedy HL. Effect of conduction defects on the signal averaged electrocardiographic determination of late potentials. Am J Cardiol. 1988;61:1265–71.

    Article  CAS  PubMed  Google Scholar 

  62. Breithardt G, Cain M, EI-Sherif N, Flowers NC, et al. Standards for analysis of ventricular late potentials using high resolution or signal averaged electrocardiography. A statement by a Task Force Committee of the European Society of Cardiology, The American Heart Association and The American College of Cardiology. Circulation. 1991;83:1481.

    Article  CAS  PubMed  Google Scholar 

  63. Cain ME, Ambos RD, Witkoski FX, Sobel BR. Fast-Fourier transform analysis of signalaveraged electrocardiograms for identification of patients prone to sustained ventricular tachycardia. Circulation. 1984;69:711.

    Article  CAS  PubMed  Google Scholar 

  64. Haberl R, Tilge CA, Pulter R, Steinbeck G. Spectral mapping of the electrocardiogram in the Fourier transform for identification of patients with sustained ventricular tachycardia and coronary artery disease. Eur Heart J. 1989;10:316.

    Article  CAS  PubMed  Google Scholar 

  65. Kelen GJ, Henkin R, Stares AM, et al. Spectral turbulance analysis of the signal averaged electrocardiogram and its predictive accuracy for inducible sustained monomorphic ventricular tachycardia. Am J Cardiol. 1991;7:965.

    Article  Google Scholar 

  66. Machac J, Weiss A, Winters SL, Barreca P, Gomes JA. A comparative study of frequency domain and time domain analysis of signal-averaged electrocardiograms in patients with ventricular tachycardia. J Am Coll Cardiol. 1988;11:284.

    Article  CAS  PubMed  Google Scholar 

  67. Kelen GJ, Henkin R, Fontaine JM, EI-Sherif N. Effects of analyzed signal duration and phase on the results of fast-Fourier transform analysis of the surface electrocardiogram in subjects with and without late potentials. Am J Cardiol. 1987;60:1282.

    Article  CAS  PubMed  Google Scholar 

  68. Malik M, Kulakowski P, Poloviccki J, et al. Frequency versus time domain analysis of signal averaged electrocardiogram: reproducibility of the results. J Am Coll Cardiol. 1992;20:127.

    Article  CAS  PubMed  Google Scholar 

  69. Kulakowski P, Malik M, Poloviccki J, et al. Frequency versus time domain analysis of signal average electrocardiograms. II. Identification of patients with ventricular tachycardia after myocardial infarction. J Am Coll Cardiol. 1992;20:135.

    Article  CAS  PubMed  Google Scholar 

  70. Farrell TG, Bashier Y, Cripps TI, et al. Risk stratification for arrhythmic events in post infarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal averaged electrocardiogram. J Am Coll Cardiol. 1991;18:667.

    Article  Google Scholar 

  71. Kuchar DL. Natural history of late potentials after myocardial infarction. In: Gomes JA, editor. Signal averaged electrocardiography. Concepts, methods and application. Dordrecht/Boston/London: Kluwer Academic Publishers; 1993. p. 443–57.

    Chapter  Google Scholar 

  72. Ip JH, Winters SL, Gomes JA. Risk stratification post myocardial infarction identification of patients at high risk of sudden cardiac death. In: Gomes JA, editor. Signal averaged electrocardiography. Concepts, methods and application. Dordrecht/Boston/London: Kluwer Academic Publishers; 1993. p. 459–68.

    Chapter  Google Scholar 

  73. Gang ES, Lew AS, Hong M, et al. Decreased incidence of ventricular late potentials after successful thrombolytic therapy for acute myocardial infarction. N Engl J Med. 1989;321:712–6.

    Article  CAS  PubMed  Google Scholar 

  74. Turrito G, Risa AL, Zanchi E, et al. The signal averaged electrocardiogram and ventricular arrhythmias after thrombolysis for acute myocardial infarction. J Am Coll Cardiol. 1990;15:1270–6.

    Article  Google Scholar 

  75. Zimmermann M, Adamec R, Ciaroni S. Reduction in the frequency of ventricular late potentials after acute myocardial infarction by early thrombolytic therapy. Am J Cardiol. 1991;67:607–703.

    Google Scholar 

  76. Ruda MY, Merkuloya IN, et al. Modulating effect of ischemia on late potentials. In: Gomes JA, editor. Signal averaged electrocardiography. Concepts, methods and application. Dordrecht/Boston/London: Kluwer Academic Publishers; 1993. p. 477–81.

    Chapter  Google Scholar 

  77. Hyndman BW, Kitney RI, Sayers BM. Spontaneous rhythms in physiological control systems. Nature. 1971;233:339–41.

    Article  CAS  PubMed  Google Scholar 

  78. Sayers BM. Analysis of heart rate variability. 1973. Ergonomics. 1973;16:17–32.

    Article  CAS  PubMed  Google Scholar 

  79. Chess GF, Tam RMK, Calaresu FR. Influence of cardiac neural inputs on rhythmic variations of heart period in the cat. Am J Phys. 1975;228:775–80.

    Article  CAS  Google Scholar 

  80. Hyndman BW, Gregory JR. Spectral analysis of sinus arrhythmia during mental loading. Ergonomics. 1975;18:255–27.

    Article  CAS  PubMed  Google Scholar 

  81. Peñáz J, Honzikova N, Fisher B. Spectral analysis of resting variability of some circulatory para meters in man. Physiol Bohemoslov. 1978;27:349–57.

    PubMed  Google Scholar 

  82. Copie X, Hnatkova K, Staunton A, Fei L, Camm AJ, Malik M. Predictive power of increased heart rate versus depressed left ventricular ejection fraction and heart rate variability for risk stratification after myocardial infarction. Results of a two-year follow-up study. J Am Coll Cardiol. 1996;27:270–6.

    Article  CAS  PubMed  Google Scholar 

  83. Katz A, Liberty IF, Porath A, Ovsyshcher I, Prystowsky EN. A simple bedside test of 1-minute heart rate variability during deep breathing as a prognostic index after myocardial infarction. Am Heart J. 1999;138:32–8.

    Article  CAS  PubMed  Google Scholar 

  84. Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59:256–62.

    Article  CAS  PubMed  Google Scholar 

  85. Lanza GA, Guido V, Galeazzi MM, et al. Prognostic role of heart rate variability in patients with a recent acute myocardial infarction. Am J Cardiol. 1998;82:1323–8.

    Article  CAS  PubMed  Google Scholar 

  86. Malik M, Camm AJ, Janse MJ, et al. Depressed heart rate variability identifies postinfarction patients who might benefit from prophylactic treatment with amiodarone: a substudy of EMIAT (The European Myocardial Infarct Amiodarone Trial). J Am Coll Cardiol. 2000;35:1263–75.

    Article  CAS  PubMed  Google Scholar 

  87. Zuanetti G, Neilson JM, Latini R, Santoro E, Maggioni AP, Ewing DJ. Prognostic significance of heart rate variability in post-myocardial infarction patients in the fibrinolytic era. The GISSI-2 results. Gruppo Italiano per lo Studio della Sopravvivenza nell’ Infarto Miocardico. Circulation. 1996;94:432–6.

    Article  CAS  PubMed  Google Scholar 

  88. La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) investigators. Lancet. 1998;351:478–84.

    Article  PubMed  Google Scholar 

  89. Rosenbaum DS, Jackson LE, Smith JN, et al. Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med. 1994;330:235–41.

    Article  CAS  PubMed  Google Scholar 

  90. Hohnloser SH, Klingenheben T, Li YG, et al. T wave alternans as a predictor of recurrent ventricular tachyarrhythmias in ICD recipients: prospective comparison with conventional risk markers. J Cardiovasc Electrophysiol. 1998;9:1258–68.

    Article  CAS  PubMed  Google Scholar 

  91. Gold MR, Bloomfield DM, Anderson KP, et al. A comparison of T-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. J Am Coll Cardiol. 2000;36:2247–53.

    Article  CAS  PubMed  Google Scholar 

  92. Klingenheben T, Zabel M, D’Agostino RB, et al. Predictive value of T-wave alternans for arrhythmic events in patients with congestive heart failure. Lancet. 2000;356:651–2.

    Article  CAS  PubMed  Google Scholar 

  93. Ikeda T, Saito H, Tanno K, et al. T-wave alternans as a predictor for sudden cardiac death after myocardial infarction. Am J Cardiol. 2002;89:79–82.

    Article  PubMed  Google Scholar 

  94. Bloomfield DM, Steinman RC, Namerow PB, et al. Microvolt T-wave alternans distinguishes between patients likely and patients not likely to benefit from implanted cardiac defibrillator therapy: a solution to the Multicenter Automatic Defibrillator Implantation Trial (MADIT) II conundrum. Circulation. 2004;110:1885–9.

    Article  PubMed  Google Scholar 

  95. Hohnloser SH, Ikeda T, Bloomfield DM, et al. T-wave alternans negative coronary patients with low ejection and benefit from defibrillator implantation. Lancet. 2003;362:125–6.

    Article  CAS  PubMed  Google Scholar 

  96. Hohnloser SH, Klingenheben T, Bloomfield D, et al. Usefulness of microvolt T-wave alternans for prediction of ventricular tachyarrhythmic events in patients with dilated cardiomyopathy: results from a prospective observational study. J Am Coll Cardiol. 2003;41:2220–4.

    Article  PubMed  Google Scholar 

  97. Kitamura H, Ohnishi Y, Okajima K, et al. Onset heart rate of microvolt-level T-wave alternans provides clinical and prognostic value in nonischemic dilated cardiomyopathy. J Am Coll Cardiol. 2002;39:295–300.

    Article  PubMed  Google Scholar 

  98. Bloomfield DM, Hohnloser SH, Cohen RJ. Interpretation and classification of microvolt T wave alternans tests. J Cardiovasc Electrophysiol. 2002;13:502–12.

    Article  PubMed  Google Scholar 

  99. Bloomfield DM, Bigger JT, Steinman RC, Namerow AB. Microvolt t-wave alternans and the risk of death or sustained ventricular arrhythmias in patients with left ventricular dysfunction. J Am Coll Cardiol. 2006;47:456–63.

    Article  PubMed  Google Scholar 

  100. Exner DV, Kavanagh KM, Slawnych MP. Noninvasive risk assessment early after a myocardial infarction. The REFINE study. J Am Coll Cardiol. 2007;50:2275–84.

    Article  PubMed  Google Scholar 

  101. Gehi A, Stein RH, Metz LD, Gomes JA. Microvolt T-wave alternans for risk stratification of ventricular tachyarrhythmic events: a meta-analysis. J Am Coll Cardiol. 2005;46(1):75–82.

    Article  PubMed  Google Scholar 

  102. Chow T, Kereiakes DJ, Onufer J, et al. Does microvolt T wave alternans testing predict ventricular tachyarrhythmias in patients with ischemic cardiomyopathy and prophylactic defibrillators? The master (microvolt T wave alternans testing for risk stratification of post-myocardial infarction patients) trial. J Am Coll Cardiol. 2008;52:1607–15.

    Article  PubMed  Google Scholar 

  103. Gold MR, Ip JH, Costantini O, Poole JE, et al. Microvolt T-wave alternans in assessment of arrhythmia vulnerability among patients with heart failure and systolic dysfunction: primary results from the T-wave alternans sudden cardiac death in heart failure trial substudy. Circulation. 2008;118(20):2022–8.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Costantini O, Hohnloser SH, The MM. ABCD (alternans before cardioverter defibrillator) trial strategies using t-wave alternans to improve efficiency of sudden cardiac death prevention. Am Coll Cardiol. 2009;53:471–9.

    Article  Google Scholar 

  105. Das MK, Saha C, et al. Fragmented QRS on a 12-lead ECG: a predictor of mortality and cardiac events in patients with coronary artery disease. Heart Rhythm. 2007;4:1385–92.

    Article  PubMed  Google Scholar 

  106. Cheema A, Khalid A, Wimmer A, et al. Fragmented QRS and mortality risk in patients with left ventricular dysfunction. Circ Arrhythm Electrophysiol. 2010;3:339–44.

    Article  PubMed  Google Scholar 

  107. Wang DD, Tibrewala A, Nguygen P, et al. Fragmented QRS on surface electrocardiogram is not a reliable predictor of myocardial scar, angiographic coronary disease or long term adverse outcomes. Cardiovasc Diagn Ther. 2014;4(4):279–86.

    PubMed  PubMed Central  Google Scholar 

  108. Maggioni AP, Zuanetti G, Franzosi MG, et al. Prevalence and prognostic significance of ventricular arrhythmias after acute myocardial infarction in the ftinrinolytic era. GISSI-2 results. Circulation. 1993;87(2):312–22.

    Article  CAS  PubMed  Google Scholar 

  109. Feit F, Muller HS, Braunwald E. Thrombolysis in myocardial infarction (TIMI) phase II trials: outcome comparison of a “conservative strategy” in community versus tertiary hospitals. J Am Coll Cardiol. 1990;16(7):1529–34.

    Article  CAS  PubMed  Google Scholar 

  110. Mueller HS, Cohen LS, Braunwald E, et al. Predictors of early morbidity and mortality after thrombolytic therapy of acute myocardial infarction. Analyses of patient subgroups in the thrombolysis in myocardial infarction (TIMI) trial, phase II. Circulation. 1992;85(4):1254–64.

    Article  CAS  PubMed  Google Scholar 

  111. Williams BE, Genell Knatterud M, et al. One-year results of the thrombolysis in myocardial infarction investigation (TIMI) phase II trial. Circulation. 1992;85:533–42.

    Article  CAS  PubMed  Google Scholar 

  112. Solomon SD, Zelenkofske S, et al. Sudden death in patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. N Engl J Med. 2005;352:2581–8.

    Article  CAS  PubMed  Google Scholar 

  113. Rush CJ, Campbell RT, Jhund PS. Falling cardiovascular mortality in heart failure with reduced ejection fraction and implications for clinical trials. JACC Heart Fail. 2015;3(8):603–14.

    Article  PubMed  Google Scholar 

  114. Bailey JJ, Berson AS, Handelsman H, Hodges M. Utility of current risk stratification tests for predicting major arrhythmic events after myocardial infarction. J Am Coll Cardiol. 2001;38(7):1902–11.

    Article  CAS  PubMed  Google Scholar 

  115. Moss AJ, Hall WJ, Cannom DS, Daubert JP, Higgins SL, Klein H, et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N Engl J Med. 1996;335:1933–40. [PMID: 8960472].

    Article  CAS  PubMed  Google Scholar 

  116. Buxton AE, Lee KL, Fisher JD, Josephson ME, Prystowsky EN, Hafley G. A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained tachycardia trial Investigators. N Engl J Med. 1999;341:1882–90. [PMID: 10601507].

    Article  CAS  PubMed  Google Scholar 

  117. Bigger JT Jr. Prophylactic use of implanted cardiac defibrillators in patients at high risk for ventricular arrhythmias after coronary artery bypass graft surgery. Coronary Artery Bypass Graft (CABG) Patch Trial Investigators. N Engl J Med. 1997;337:1569–75. [PMD:9371853].

    Article  PubMed  Google Scholar 

  118. Gomes JA, Cain ME, Buxton AE, Josephson ME, Lee KL, Hafley GE. Prediction of long-term outcomes by signal-averaged electrocardiography in patients with non sustained ventricular tachycardia, coronary artery disease, and left ventricular dysfunction. Circulation. 2001;104:306–441.

    Article  Google Scholar 

  119. Wilber DJ, Zareba W, Hall J, et al. Time dependence of mortality risk and defibrillator benefit after myocardial infarction. Circulation. 2004;109:1082–4. [PubMed].

    Article  PubMed  Google Scholar 

  120. Hohnloser SH, Kuck KH, Dorian P, DINAMIT Investigators, et al. Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. N Engl J Med. 2004;351:2481–8. [PMID: 15590950].

    Article  CAS  PubMed  Google Scholar 

  121. Steinbeck G, Andresen D, Seidl K. Defibrillator implantation early after myocardial infarction. N Engl J Med. 2009;361:1427–36.

    Article  CAS  PubMed  Google Scholar 

  122. Kadish A, Dyer A, Daubert JP, et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med. 2004;350:2151–8.

    Article  CAS  PubMed  Google Scholar 

  123. Strickburger SA, Hummel JD, Bartlett TG. Amiodarone versus implantable cardioverter-defibrillator: randomized trial in patients with nonischemic dilated cardiomyopathy and asymptomatic nonsustained ventricular tachycardia--AMIOVIRT. J Am Coll Cardiol. 2003;42(10):1707–12.

    Article  Google Scholar 

  124. Bansch D, Antz M, Boczor S, et al. Primary prevention of sudden cardiac death in idiopathic dilated cardiomyopathy: the Cardiomyopathy Trial (CAT). Circulation. 2002;105:1453–8. [PMID: 11914254].

    Article  PubMed  Google Scholar 

  125. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter–defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.

    Article  CAS  PubMed  Google Scholar 

  126. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50.

    Article  CAS  PubMed  Google Scholar 

  127. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, Multicenter Automatic Defibrillator Implantation Trial II Investigators, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346:877–83.

    Article  PubMed  Google Scholar 

  128. Goldenberg I, Vyas AK, Hall WJ, MADIT-II Investigators, et al. Risk stratification for primary prevention of a cardioverter defibrillator in patients with ischemic left ventricular dysfunction. J Am Coll Cardiol. 2008;51:288–96.

    Article  PubMed  Google Scholar 

  129. Stecker EC, Vickers C, Waltz J, et al. Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction: two-year findings from the Oregon sudden unexpected death study. J Am Coll Cardiol. 2006;47:1161–6.

    Article  PubMed  Google Scholar 

  130. Narayanan K, Reinier K, Uy-Evanado A, et al. Frequency and determinants of implantable cardioverter defibrillator deployment among primary prevention candidates with subsequent sudden cardiac arrest in the community. Circulation. 2013;128:1733–8.

    Article  PubMed  Google Scholar 

  131. Pouleur AC, Barkoudah E, Uno H, et al. Pathogenesis of sudden unexpected death in a clinical trial of patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. Circulation. 2010;122:597–602.

    Article  PubMed  Google Scholar 

  132. Yap YG, Duong T, Bland JM, et al. Optimising the dichotomy limit for left ventricular ejection fraction in selecting patients for defibrillator therapy after myocardial infarction. Heart. 2007;93:832–6.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Dagres N, Hindricks G. Risk stratification after myocardial infarction: is left ventricular ejection fraction enough to prevent sudden cardiac death? Eur Heart J. 2013;34:1964–71.

    Article  PubMed  Google Scholar 

  134. Zhang V, Gualler E, Blasco-Colmenares E, et al. Changes in follow-up left ventricular ejection fraction associated with outcomes in primary prevention implantable cardioverter-defibrillator and cardiac resynchronization therapy device recipients. J Am Coll Cardiol. 2015;66:524–31.

    Article  PubMed  PubMed Central  Google Scholar 

  135. van Veldhuisen DJ, Linssen GC, Jaarsma T, et al. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol. 2013;61:1498–506.

    Article  PubMed  CAS  Google Scholar 

  136. Scott PA, Barry J, Roberts PR, Morgan JM. Brain natriuretic peptide for the prediction of sudden cardiac death and ventricular arrhythmias: a meta-analysis. Eur J Heart Fail. 2009;11:958–66.

    Article  CAS  PubMed  Google Scholar 

  137. Bayes-Genis A, Santalo-Bel M, Zapico-Muniz E, et al. N-terminal probrain natriuretic peptide (NT-proBNP) in the emergency diagnosis and in-hospital monitoring of patients with dyspnoea and ventricular dysfunction. Eur J Heart Fail. 2004;15:301–8.

    Article  CAS  Google Scholar 

  138. Kadish A, Dyer A, Daubert JP, et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med. 2004;350:2151–8.

    Article  CAS  PubMed  Google Scholar 

  139. Bänsch D, Antz M, Boczor S, et al. Primary prevention of sudden cardiac death in idiopathic dilated cardiomyopathy: the cardiomyopathy trial (CAT). Circulation. 2002;105:1453–8.

    Article  PubMed  Google Scholar 

  140. Strickberger SA, Hummel JD, Bartlett TG, et al. Amiodarone versus implantable cardioverter-defibrillator: randomized trial in patients with nonischemic dilated cardiomyopathy and asymptomatic nonsustained ventricular tachycardia-AMIOVIRT. J Am Coll Cardiol. 2003;41:1707–12.

    Article  PubMed  Google Scholar 

  141. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverterdefibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.

    Article  CAS  PubMed  Google Scholar 

  142. Køber L, Thune JJ, Nielsen JC, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med. 2016;375:1221–30.

    Article  PubMed  Google Scholar 

  143. Desai AS, Fang JC, Maisel WH, et al. Implantable defibrillators for the prevention of mortality in patients with nonischemic cardiomyopathy: a meta-analysis of randomized controlled trials. JAMA. 2004;292:2874–9.

    Article  CAS  PubMed  Google Scholar 

  144. Beggs SAS, Jhund PS, Jackson CE, et al. Non-ischaemic cardiomyopathy, sudden death and implantable defibrillators: a review and meta-analysis. Heart. 2018;104:144–50.

    Article  CAS  PubMed  Google Scholar 

  145. Mewton N, Liu CY, Croisille P, et al. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57:891–903.

    Article  PubMed  Google Scholar 

  146. Iles LM, Ellims AH, Llewellyn H, et al. Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging. 2015;16:14–22.

    Article  PubMed  Google Scholar 

  147. Gulati A, Jabbour A, Ismail TF, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013;309:896–908.

    Article  CAS  PubMed  Google Scholar 

  148. McCrohon JA, Moon JC, Prasad SK, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation. 2003;108:54–9.

    Article  CAS  PubMed  Google Scholar 

  149. Di Marco A, Anguera I, Schmitt M, et al. Late gadolinium enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopathy: systematic review and meta-analysis. JACC Heart Fail. 2017;5:28–38.

    Article  PubMed  Google Scholar 

  150. Assomull RG, Prasad SK, Lyne J, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48:1977–85.

    Article  PubMed  Google Scholar 

  151. Iles L, Pfluger H, Lefkovits L, et al. Myocardial fibrosis predicts appropriate device therapy in patients with implantable cardioverter-defibrillators for primary prevention of sudden cardiac death. J Am Coll Cardiol. 2011;57:821–8.

    Article  PubMed  Google Scholar 

  152. Halliday BP, Gulati A, Ali A, et al. Association between midwall late gadolinium enhancement and sudden cardiac death in patients with dilated cardiomyopathy and mild and moderate left ventricular systolic dysfunction. Circulation. 2017;135:2106–15.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kuruvilla S, Adenaw N, Katwal AB, et al. Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2014;7:250–8.

    Article  PubMed  Google Scholar 

  154. Disertori M, Rigoni M, Pace N, et al. Myocardial fibrosis assessment by lge is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic lv dysfunction: a meta-analysis. JACC Cardiovasc Imaging. 2016;9:1046–55.

    Article  PubMed  Google Scholar 

  155. Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death. Circulation. 2012;125(4):620–37.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Bezzina CR, Pazoki R, Bardai A, et al. Genome-wide association study identifies a susceptibility locus at 21q21 for ventricular fibrillation in acute myocardial infarction. Nat Genet. 2010;42:688–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nat Med. 2019;25:70–4.

    Article  CAS  PubMed  Google Scholar 

  158. Zaret BL, Wackers FJ, Terrin ML, et al. Value of radionuclide rest and exercise left ventricular ejection fraction in assessing survival of patients after thrombolytic therapy for acute myocardial infarction: results of thrombolysis in myocardial infarction (TIMI) phase II study. J Am Coll Cardiol. 1995;26:73–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Anthony Gomes .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, J.A. (2020). Noninvasive Risk Stratification for Sudden Cardiac Death. In: Heart Rhythm Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-45066-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45066-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45065-6

  • Online ISBN: 978-3-030-45066-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics