Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The measurement of quantum radiation pressure noise in Chap. 6 creates the opportunity to study various techniques for reducing QRPN. This chapter describes two experiments in which we reduce the amount of QRPN. The first experiment demonstrates the elimination of QRPN from the measurement, or QRPN evasion, by modifying how the light from the cavity is detected. The second experiment modifies or squeezes the light that is injected into the optomechanical cavity by altering the quantum mechanical fluctuations in the amplitude and phase quadratures of the light. The motivation for doing each of these experiments stems from the fact that they represent two methods that have been proposed for reducing quantum radiation pressure noise in gravitational wave detectors (Kimble et al. in Phys Rev D 65:022002, (2001) [1]), with squeezing currently being installed in the LIGO interferometers for reducing the shot noise during the third observing run and beyond (Tse et al. in Phys Rev Lett 123:231107, (2019) [2]). Results from this chapter can be found in Cripe et al. (Quantum back action cancellation in the audio band, (2018), [3]) and Yap et al. (Nature Photonics 14:19–23, (2020) [4]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kimble HJ, Levin Y, Matsko AB, Thorne KS, Vyatchanin SP (2001) Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys Rev D 65:022002. https://doi.org/10.1103/PhysRevD.65.022002

    Article  ADS  Google Scholar 

  2. Tse M et al (2019) Quantum-enhanced advanced ligo detectors in the era of gravitational-wave astronomy. Phys Rev Lett 123:231107. https://doi.org/10.1103/PhysRevLett.123.231107

    Article  ADS  Google Scholar 

  3. Cripe J, Cullen T, Chen Y, Heu P, Follman D, Cole GD, Corbitt T (2018) Quantum back action cancellation in the audio band. arXiv:1812.10028

  4. Yap MJ, Cripe J, Mansell GL, McRae TG, Ward RL, Slagmolen BJJ, Heu P, Follman D, Cole GD, Corbitt T, McClelland DE (2020) Broadband reduction of quantum radiation pressure noise via squeezed light injection. Nature Photonics 14:19–23. https://doi.org/10.1038/s41566-019-0527-y

    Article  Google Scholar 

  5. Chen Y (2012) Back-action evasion for a trapped mirror, Back-action evasion for a trapped mirror, unpublished note from Macrosopic Quantum Mechanics discussion

    Google Scholar 

  6. Cripe J, Aggarwal N, Lanza R, Libson A, Singh R, Heu P, Follman D, Cole GD, Mavalvala N, Corbitt T (2019) Observation of a room-temperature oscillator’s motion dominated by quantum fluctuations over a broad audio-frequency band. Nature 568(7752):364–367. https://doi.org/10.1038/s41586-019-1051-4

    Article  ADS  Google Scholar 

  7. Miao H, Yang H, Adhikari RX, Chen Y (2014) Quantum limits of interferometer topologies for gravitational radiation detection. Class Quantum Grav 31(16):165010

    Article  ADS  Google Scholar 

  8. Evans M, Barsotti L, Kwee P, Harms J, Miao H (2013) Realistic filter cavities for advanced gravitational wave detectors. Phys Rev D 88:022002. https://doi.org/10.1103/PhysRevD.88.022002

    Article  ADS  Google Scholar 

  9. Braginsky VB, Manukin AB (1967) Ponderomotive effects of electromagnetic radiation. Soviet Physics JETP 25:653–655

    ADS  Google Scholar 

  10. Cripe J, Aggarwal N, Singh R, Lanza R, Libson A, Yap MJ, Cole GD, McClelland DE, Mavalvala N, Corbitt T (2018) Radiation-pressure-mediated control of an optomechanical cavity. Phys Rev A 97:013827. https://doi.org/10.1103/PhysRevA.97.013827

  11. Caves CM (1980) Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys Rev Lett 45:75–79. https://doi.org/10.1103/PhysRevLett.45.75

    Article  ADS  Google Scholar 

  12. Abadie J et al (2011) A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat Phys 7:962

    Article  Google Scholar 

  13. Grote H, Danzmann K, Dooley KL, Schnabel R, Slutsky J, Vahlbruch H (2013) First long-term application of squeezed states of light in a gravitational-wave observatory. Phys Rev Lett 110:181101. https://doi.org/10.1103/PhysRevLett.110.181101

    Article  ADS  Google Scholar 

  14. Aasi J et al (2013) Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat Photonics 7:613–619

    Article  ADS  Google Scholar 

  15. Clark JB, Lecocq F, Simmonds RW, Aumentado J, Teufel JD (2016) Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator. Nat Phy 12

    Google Scholar 

  16. Purdy TP, Peterson RW, Regal CA (2013) Observation of radiation pressure shot noise on a macroscopic object. Science 339(6121):801–804, https://doi.org/10.1126/science.1231282

  17. Teufel JD, Lecocq F, Simmonds RW (2016) Overwhelming thermomechanical motion with microwave radiation pressure shot noise. Phys Rev Lett 116:013602. https://doi.org/10.1103/PhysRevLett.116.013602

    Article  ADS  Google Scholar 

  18. Purdy TP, Grutter KE, Srinivasan K, Taylor JM (2017) Quantum correlations from a room-temperature optomechanical cavity. Science 356(6344):1265–1268. https://doi.org/10.1126/science.aag1407

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Sudhir V, Schilling R, Fedorov SA, Schütz H, Wilson DJ, Kippenberg TJ (2017) Quantum correlations of light from a room-temperature mechanical oscillator. Phys Rev X 7:031055. https://doi.org/10.1103/PhysRevX.7.031055

    Article  Google Scholar 

  20. McKenzie K, Grosse N, Bowen WP, Whitcomb SE, Gray MB, McClelland DE, Lam PK (2004) Squeezing in the audio gravitational-wave detection band. Phys Rev Lett 93:161105. https://doi.org/10.1103/PhysRevLett.93.161105

    Article  ADS  Google Scholar 

  21. Drever RWP, Hall JL, Kowalski FV, Hough J, Ford GM, Munley AJ, Ward H (1983) Laser phase and frequency stabilization using an optical resonator. Appl Phy B 31(2):97–105. https://doi.org/10.1007/BF00702605

    Article  ADS  Google Scholar 

  22. Yap MJ (2016) Sledgehammer/ beamsplitter approach. https://dcc.ligo.org/LIGO-G1602264

  23. Goda K, Miyakawa O, Mikhailov EE, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein AJ, Mavalvala N (2008) A quantum-enhanced prototype gravitational-wave detector. Nat Phy 4:472

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Cripe .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cripe, J. (2020). Quantum Radiation Pressure Noise Reduction and Evasion. In: Broadband Measurement and Reduction of Quantum Radiation Pressure Noise in the Audio Band. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-45031-1_7

Download citation

Publish with us

Policies and ethics