Skip to main content

Nonlinearity, Geometry and Field Theory Solitons

  • Chapter
  • First Online:
Emerging Frontiers in Nonlinear Science

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 32))

Abstract

Topological solitons occur in many types of nonlinear field theory. Their motion and interactions can be simulated classically, and can be well approximated by a finite-dimensional dynamics on a moduli space of collective coordinates. Interesting phenomena related to the curvature and topology of moduli spaces are illustrated here through the examples of vortices, sigma model lumps, and monopoles. Collective coordinate dynamics can be quantized, and it is shown how quantized Skyrmion dynamics is used to understand aspects of nuclear physics. A novel model for nuclear fusion, based on wormhole geometry, is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Manton, P. Sutcliffe, Topological Solitons (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  2. E.J. Weinberg, Classical Solutions in Quantum Field Theory (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  3. N.S. Manton, Phys. Lett. B 110, 54 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  4. E.B. Bogomolny, Sov. J. Nucl. Phys. 24, 449 (1976)

    Google Scholar 

  5. M. Shifman, A. Yung, Supersymmetric Solitons (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  6. N.S. Manton, K. Oleś, A. Wereszczyński, JHEP 2019, 86 (2019)

    Article  Google Scholar 

  7. Y.N. Ovchinnikov, I.M. Sigal, Nonlinearity 11, 1277 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. T.H.R. Skyrme, Proc. Roy. Soc. Lond. A 260, 127 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  9. T.H.R. Skyrme, Nucl. Phys. 31, 556 (1962)

    Article  MathSciNet  Google Scholar 

  10. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915 (2009)

    Article  ADS  Google Scholar 

  11. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature 465, 901 (2010)

    Article  ADS  Google Scholar 

  12. C.H. Taubes, Commun. Math. Phys. 72, 277 (1980)

    Article  ADS  Google Scholar 

  13. T.M. Samols, Commun. Math. Phys. 145, 149 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  14. A.A. Belavin, A.M. Polyakov, JETP Lett. 22, 245 (1975)

    ADS  Google Scholar 

  15. A.M. Din, W.J. Zakrzewski, Nucl. Phys. B 259, 667 (1985)

    Article  ADS  Google Scholar 

  16. L.A. Sadun, J.M. Speight, Lett. Math. Phys. 43, 329 (1998)

    Article  MathSciNet  Google Scholar 

  17. B. Piette, W.J. Zakrzewski, Nonlinearity 9, 897 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  18. M.F. Atiyah, N.J. Hitchin, The Geometry and Dynamics of Magnetic Monopoles (Princeton University Press, 1988)

    Google Scholar 

  19. D. Foster, S. Krusch, Nucl. Phys. B 897, 697 (2015)

    Article  ADS  Google Scholar 

  20. D. Foster, N.S. Manton, Nucl. Phys. B 899, 513 (2015)

    Article  ADS  Google Scholar 

  21. K. Wen, T. Nakatsukasa, Phys. Rev. C 96, 014610 (2017)

    Article  ADS  Google Scholar 

  22. P. Papakonstantinou, A.I.P. Conf, Proc. 1947, 020023 (2018)

    Google Scholar 

  23. A.E. Litherland, J.A. Kuehner, H.E. Gove, M.A. Clark, E. Almqvist, Phys. Rev. Lett. 7, 98 (1961)

    Article  ADS  Google Scholar 

  24. M. Bouten, Nuovo Cim. 26, 63 (1962)

    Article  ADS  Google Scholar 

  25. Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Katō, Y. Suzuki, E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29 (1980)

    Article  ADS  Google Scholar 

  26. P.A.M. Dirac, Proc. R. Soc. Lond. A 133, 60 (1931)

    Article  ADS  Google Scholar 

  27. J. Schwinger, Science 165, 757 (1969)

    Article  ADS  Google Scholar 

  28. N.S. Manton, Ann. Phys. 256, 114 (1997)

    Article  ADS  Google Scholar 

  29. N.M. Romão, J. Math. Phys. 42, 3445 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  30. D. Eriksson, N.M. Romão, Kähler quantization of vortex moduli. arXiv:1612.08505

  31. A. Sen, Phys. Lett. B 329, 217 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Segal, A. Selby, Commun. Math. Phys. 177, 775 (1996)

    Article  ADS  Google Scholar 

  33. B.J. Schroers, Nucl. Phys. B 367, 177 (1991)

    Article  ADS  Google Scholar 

  34. G.S. Adkins, C.R. Nappi, E. Witten, Nucl. Phys. B 228, 552 (1983)

    Article  ADS  Google Scholar 

  35. D.S. Freed, J. Diff. Geom. 80, 45 (2008)

    Article  Google Scholar 

  36. A. Jackson, A.D. Jackson, V. Pasquier, Nucl. Phys. A 432, 567 (1985)

    Article  ADS  Google Scholar 

  37. N.S. Manton, Phys. Rev. Lett. 60, 1916 (1988)

    Article  ADS  Google Scholar 

  38. M.F. Atiyah, N.S. Manton, Commun. Math. Phys. 153, 391 (1993)

    Article  ADS  Google Scholar 

  39. E. Braaten, S. Townsend, L. Carson, Phys. Lett. B 235, 147 (1990)

    Article  ADS  Google Scholar 

  40. R.A. Battye, P.M. Sutcliffe, Phys. Rev. Lett. 79, 363 (1997)

    Article  ADS  Google Scholar 

  41. E. Braaten, L. Carson, Phys. Rev. D 38, 3525 (1988)

    Article  ADS  Google Scholar 

  42. L. Carson, Phys. Rev. Lett. 66, 1406 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  43. T.S. Walhout, Nucl. Phys. A 547, 423 (1992)

    Article  ADS  Google Scholar 

  44. P. Irwin, Phys. Rev. D 61, 114024 (2000)

    Article  ADS  Google Scholar 

  45. R.A. Battye, N.S. Manton, P.M. Sutcliffe, S.W. Wood, Phys. Rev. C 80, 034323 (2009)

    Article  ADS  Google Scholar 

  46. P.H.C. Lau, N.S. Manton, Phys. Rev. Lett. 113, 232503 (2014)

    Article  ADS  Google Scholar 

  47. R.A. Leese, N.S. Manton, B.J. Schroers, Nucl. Phys. B 442, 228 (1995)

    Article  ADS  Google Scholar 

  48. C.J. Halcrow, Nucl. Phys. B 904, 106 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  49. J.I. Rawlinson, Nucl. Phys. B 949, 114800 (2019)

    Article  MathSciNet  Google Scholar 

  50. S.B. Gudnason, C. Halcrow, Phys. Rev. D 98, 125010 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  51. R.A. Battye, N.S. Manton, P.M. Sutcliffe, Proc. Roy. Soc. Lond. A 463, 261 (2007)

    Article  ADS  Google Scholar 

  52. R. Bijker, F. Iachello, Phys. Rev. Lett. 112, 152501 (2014)

    Article  ADS  Google Scholar 

  53. C.J. Halcrow, C. King, N.S. Manton, Phys. Rev. C 95, 031303(R) (2017)

    Article  ADS  Google Scholar 

  54. C.J. Halcrow, C. King, N.S. Manton, Int. J. Mod. Phys. E 28, 1950026 (2019)

    Article  ADS  Google Scholar 

  55. J.I. Rawlinson, Nucl. Phys. A 975, 122 (2018)

    Article  ADS  Google Scholar 

  56. A. Heusler, Eur. Phys. J. A 53, 215 (2017)

    Article  ADS  Google Scholar 

  57. E. Epelbaum, PoS CD15, 014 (2016)

    Google Scholar 

  58. B. Barton-Singer, C. Ross, B.J. Schroers, Commun. Math. Phys. (2020). https://doi.org/10.1007/s00220-019-03676-1

    Article  Google Scholar 

  59. E. Walton, Some exact Skyrmion solutions on curved thin films. arXiv:1908.08428

Download references

Acknowledgements

The half-wormhole model for Oxygen-16 interacting with an alpha particle was developed following a talk by Takashi Nakatsukasa and a related question concerning Newton’s cradle by Panagiota Papakonstantinou, at the 1st APCPT-TRIUMF Joint Workshop, Pohang, Korea, 2018. I also thank J. Martin Speight and Maciej Dunajski for helpful discussions. This work has been partially supported by STFC consolidated grant ST/P000681/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas S. Manton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manton, N.S. (2020). Nonlinearity, Geometry and Field Theory Solitons. In: Kevrekidis, P., Cuevas-Maraver, J., Saxena, A. (eds) Emerging Frontiers in Nonlinear Science. Nonlinear Systems and Complexity, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-44992-6_9

Download citation

Publish with us

Policies and ethics