Skip to main content

Nonequilibrium Phenomena in Nonlinear Lattices: From Slow Relaxation to Anomalous Transport

  • Chapter
  • First Online:
Emerging Frontiers in Nonlinear Science

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 32))

Abstract

This chapter contains an overview of the effects of nonlinear interactions in selected problems of non-equilibrium statistical mechanics. Most of the emphasis is put on open setups, where energy is exchanged with the environment. With reference to a few models of classical coupled anharmonic oscillators, we review anomalous but general properties such as extremely slow relaxation processes, or non-Fourier heat transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The actual implementation of a reservoir for the DNLS is less straightforward than for usual oscillator models [28]. Two main strategies have been proposed: the first is a Monte-Carlo dynamics [27] whereby the reservoir performs random perturbations \(\delta z_1\) of, say, the state variable \(z_1\) that are accepted or rejected according to a grand-canonical Metropolis cost-function \(\exp {[-\beta (\Delta H-\mu \Delta A)]}\), where \(\Delta H\) and \(\Delta A\) are respectively the variations of energy and mass produced by \(\delta z_1\). Between successive interactions with the environment the dynamics is Hamiltonian and can be integrated by symplectic algorithms [29]. Another approach is based on a Langevin dynamics with a dissipation designed in such a way that equilibrium corresponds to the grand-canonical measure [24].

  2. 2.

    Bounded fluctuations would be possible only in the presence of an attractor, but this is a Hamiltonian system.

References

  1. S. Lepri (ed.), Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer, vol. 921, Lecture Notes in Physics (Springer, Heidelberg, 2016)

    Google Scholar 

  2. R. Livi, P. Politi, Nonequilibrium Statistical Physics: A Modern Perspective (Cambridge University Press, Cambridge, 2017)

    Book  MATH  Google Scholar 

  3. M.J. Gillan, R.W. Holloway, J. Phys. C 18, 5705 (1985)

    Article  ADS  Google Scholar 

  4. B. Hu, B. Li, H. Zhao, Phys. Rev. E 57, 2992 (1998)

    Article  ADS  Google Scholar 

  5. K. Aoki, D. Kusnezov, Phys. Lett. A 265, 250 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. P.G. Kevrekidis, J. Cuevas-Maraver (eds.), A Dynamical Perspective on the \(\phi ^4\)Model: Past, Present and Future (Springer, Cham, 2019)

    Google Scholar 

  7. G. Casati, J. Ford, F. Vivaldi, W.M. Visscher, Phys. Rev. Lett. 52, 1861 (1984)

    Article  ADS  Google Scholar 

  8. E. Fermi, J. Pasta, S. Ulam, Los Alamos Report LA-1940, p. 975 (1955)

    Google Scholar 

  9. D.N. Payton, M. Rich, W.M. Visscher, Phys. Rev. 160, 706 (1967)

    Article  ADS  Google Scholar 

  10. H. Nakazawa, Progr. Theor. Phys. Suppl. 45, 231 (1970)

    Article  ADS  Google Scholar 

  11. H. Kaburaki, M. Machida, Phys. Lett. A 181, 85 (1993)

    Article  ADS  Google Scholar 

  12. J.C. Eilbeck, P.S. Lomdahl, A.C. Scott, Phys. D 16, 318 (1985)

    Article  MathSciNet  Google Scholar 

  13. J.C. Eilbeck, M. Johansson, in Proceedings of the Conference on Localization and Energy Transfer in Nonlinear Systems, eds. by L. Vazquez, R.S. MacKay, M.P. Zorzano. San Lorenzo del Escorial, June 2002 (World Scientific, Singapore, 2003), p. 44

    Google Scholar 

  14. P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation (Springer, Berlin, 2009)

    Google Scholar 

  15. A. Scott, Nonlinear Science. Emergence and Dynamics of Coherent Structures (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  16. A.M. Kosevich, M.A. Mamalui, J. Exp. Theor. Phys. 95, 777 (2002)

    Article  ADS  Google Scholar 

  17. D. Hennig, G.P. Tsironis, Phys. Rep. 307, 333 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Franzosi, R. Livi, G.L. Oppo, A. Politi, Nonlinearity 24, R89 (2011)

    Article  Google Scholar 

  19. S. Flach, A.V. Gorbach, Phys. Rep. 467, 1 (2008)

    Article  ADS  Google Scholar 

  20. M. Johansson, K.Ø. Rasmussen, Phys. Rev. E 70, 066610 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Iubini, S. Lepri, R. Livi, A. Politi, J. Stat. Mech.: Theory Exp. 2013, P08017 (2013)

    Article  Google Scholar 

  22. H. Spohn, J. Stat. Phys. 154, 1191 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. K.Ø. Rasmussen, T. Cretegny, P.G. Kevrekidis, N. Grønbech-Jensen, Phys. Rev. Lett. 84, 3740 (2000)

    Article  ADS  Google Scholar 

  24. S. Iubini, R. Franzosi, R. Livi, G.L. Oppo, A. Politi, New J. Phys. 15, 023032 (2013)

    Article  ADS  Google Scholar 

  25. G. Gradenigo, S. Iubini, R. Livi, S.N. Majumdar, Localization in the Discrete Non-Linear Schrödinger equation: mechanism of a first-order transition in the microcanonical ensemble, arXiv:1910.07461

  26. H.-H. Rugh, Phys. Rev. Lett. 78, 772 (1997)

    Article  ADS  Google Scholar 

  27. S. Iubini, S. Lepri, A. Politi, Phys. Rev. E 86, 011108 (2012)

    Article  ADS  Google Scholar 

  28. S. Lepri, R. Livi, A. Politi, Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Yoshida, Phys. Lett. A 150, 262 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  30. G. Benettin, A. Ponno, J. Stat. Phys. 144, 793 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  31. G. Benettin, H. Christodoulidi, A. Ponno, J. Stat. Phys. 152, 195 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Onorato, L. Vozella, D. Proment, YuV Lvov, Proc. Natl. Acad. Sci. USA 112, 4208 (2015)

    Article  ADS  Google Scholar 

  33. G.P. Tsironis, S. Aubry, Phys. Rev. Lett. 77, 5225 (1996)

    Article  ADS  Google Scholar 

  34. F. Piazza, S. Lepri, R. Livi, J. Phys. A: Math. Gen. 34, 9803 (2001)

    Article  ADS  Google Scholar 

  35. F. Piazza, S. Lepri, R. Livi, Chaos 13, 637 (2003)

    Article  ADS  Google Scholar 

  36. M. Eleftheriou, S. Lepri, R. Livi, F. Piazza, Phys. D 204, 230 (2005)

    Article  MathSciNet  Google Scholar 

  37. N. Cuneo, J.-P. Eckmann, Commun. Math. Phys. 345, 185 (2016)

    Article  ADS  Google Scholar 

  38. N. Cuneo, J.-P. Eckmann, C.E. Wayne, Nonlinearity 30, R81 (2017)

    Article  Google Scholar 

  39. J.-P. Eckmann, C.E. Wayne, Decay of Hamiltonian Breathers under Dissipation, arXiv:1907.12632

  40. R. Livi, R. Franzosi, G.-L. Oppo, Phys. Rev. Lett. 97, 060401 (2006)

    Article  ADS  Google Scholar 

  41. G.S. Ng, H. Hennig, R. Fleischmann, T. Kottos, T. Geisel, New J. Phys. 11, 073045 (2009)

    Article  ADS  Google Scholar 

  42. S. Iubini, L. Chirondojan, G.-L. Oppo, A. Politi, P. Politi, Phys. Rev. Lett. 122, 084102 (2019)

    Article  ADS  Google Scholar 

  43. B. Rumpf, Phys. Rev. E 69, 016618 (2004)

    Article  ADS  Google Scholar 

  44. B. Rumpf, Phys. Rev. E 77, 036606 (2008)

    Article  ADS  Google Scholar 

  45. S. Iubini, S. Lepri, R. Livi, A. Politi, Phys. Rev. Lett. 112, 134101 (2014)

    Article  ADS  Google Scholar 

  46. S. Iubini, A. Politi, P. Politi, J. Stat. Mech.: Theory Exp. 2017, 073201 (2017)

    Article  Google Scholar 

  47. T. Mithun, Y. Kati, C. Danieli, S. Flach, Phys. Rev. Lett. 120, 184101 (2018)

    Article  ADS  Google Scholar 

  48. S. Iubini, S. Lepri, R. Livi, G.-L. Oppo, A. Politi, Entropy-Switz. 19, 445 (2017)

    Article  ADS  Google Scholar 

  49. A. Dhar, Adv. Phys. 57, 457 (2008)

    Article  ADS  Google Scholar 

  50. G. Basile, L. Delfini, S. Lepri, R. Livi, S. Olla, A. Politi, Eur. Phys J.-Spec. Top. 151, 85 (2007)

    Google Scholar 

  51. S. Lepri, R. Livi, A. Politi, Phys. Rev. Lett. 78, 1896 (1997)

    Article  ADS  Google Scholar 

  52. S. Lepri, R. Livi, A. Politi, Europhys. Lett. 43, 271 (1998)

    Article  ADS  Google Scholar 

  53. S. Lepri, Eur. Phys J. B 18, 441 (2000)

    Article  ADS  Google Scholar 

  54. S. Denisov, J. Klafter, M. Urbakh, Phys. Rev. Lett. 91, 194301 (2003)

    Article  ADS  Google Scholar 

  55. P. Cipriani, S. Denisov, A. Politi, Phys. Rev. Lett. 94, 244301 (2005)

    Article  ADS  Google Scholar 

  56. S. Lepri, A. Politi, Phys. Rev. E 83, 030107 (2011)

    Article  ADS  Google Scholar 

  57. A. Kundu, C. Bernardin, K. Saito, A. Kundu, A. Dhar, J. Stat. Mech.: Theory Exp. 2019, 013205 (2019)

    Article  Google Scholar 

  58. H. van Beijeren, Phys. Rev. Lett. 108, 180601 (2012)

    Article  Google Scholar 

  59. A.L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  60. S.G. Das, A. Dhar, K. Saito, C.B. Mendl, H. Spohn, Phys. Rev. E 90, 012124 (2014)

    Article  ADS  Google Scholar 

  61. P. Di Cintio, R. Livi, H. Bufferand, G. Ciraolo, S. Lepri, M.J. Straka, Phys. Rev. E 92, 062108 (2015)

    Article  ADS  Google Scholar 

  62. C.B. Mendl, H. Spohn, Phys. Rev. Lett. 111, 230601 (2013)

    Article  ADS  Google Scholar 

  63. S. Lepri, R. Livi, A. Politi, Phys. Rev. E 68, 067102 (2003)

    Article  ADS  Google Scholar 

  64. G.R. Lee-Dadswell, Phys. Rev. E 91, 032102 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  65. C. Mejia-Monasterio, H. Larralde, F. Leyvraz, Phys. Rev. Lett. 86, 5417 (2001)

    Article  ADS  Google Scholar 

  66. G. Casati, L. Wang, T. Prosen, J. Stat. Mech.: Theory Exp. 2009, L03004 (2009)

    Article  Google Scholar 

  67. G. Benenti, G. Casati, C. Mejia-Monasterio, New J. Phys. 16, 015014 (2014)

    Article  ADS  Google Scholar 

  68. S. Iubini, S. Lepri, R. Livi, A. Politi, New J. Phys. 18, 083023 (2016)

    Article  ADS  Google Scholar 

  69. A. Iacobucci, F. Legoll, S. Olla, G. Stoltz, Phys. Rev. E 84, 061108 (2011)

    Article  ADS  Google Scholar 

  70. M. Toda, Phys. Scr. 20, 424 (1979)

    Article  ADS  Google Scholar 

  71. X. Zotos, J. Low. Temp. Phys. 126, 1185 (2002)

    Article  ADS  Google Scholar 

  72. B. Sriram Shastry, A.P. Young, Phys. Rev. B 82, 104306 (2010)

    Google Scholar 

  73. P. Mazur, Physica 43, 533 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  74. N. Theodorakopoulos, M. Peyrard, Phys. Rev. Lett. 83, 2293 (1999)

    Article  ADS  Google Scholar 

  75. H. Spohn, J. Math. Phys. 59, 091402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  76. A. Kundu, A. Dhar, Phys. Rev. E 94, 062130 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  77. P. Di Cintio, S. Iubini, S. Lepri, R. Livi, Chaos Soliton Fract. 117, 249 (2018)

    Article  ADS  Google Scholar 

  78. A. Dhar, A. Kundu, J.L. Lebowitz, J.A. Scaramazza, J. Stat. Phys. 175, 1298 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  79. A. Iacobucci, F. Legoll, S. Olla, G. Stoltz, J. Stat. Phys. 140, 336 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  80. S. Chen, J. Wang, G. Casati, G. Benenti, Phys. Rev. E 90, 032134 (2014)

    Article  ADS  Google Scholar 

  81. A. Campa, T. Dauxois, D. Fanelli, S. Ruffo, Physics of Long-Range Interacting Systems (Oxford University Press, Oxford, 2014)

    Book  MATH  Google Scholar 

  82. R.R. Avila, E. Pereira, D.L. Teixeira, Phys. A 423, 51 (2015)

    Article  MathSciNet  Google Scholar 

  83. D. Bagchi, Phys. Rev. E 95, 032102 (2017)

    Article  ADS  Google Scholar 

  84. C. Olivares, C. Anteneodo, Phys. Rev. E 94, 042117 (2016)

    Article  ADS  Google Scholar 

  85. S. Iubini, P. Di Cintio, S. Lepri, R. Livi, L. Casetti, Phys. Rev. E 97, 032102 (2018)

    Article  ADS  Google Scholar 

  86. P. Di Cintio, S. Iubini, S. Lepri, R. Livi, J. Phys. A: Math. Theor. 52, 274001 (2019)

    Article  Google Scholar 

  87. D. Ruelle, Statistical Mechanics: Rigorous Results (World Scientific, Singapore, 1999)

    Book  MATH  Google Scholar 

  88. L. Vidmar, M. Rigol, J. Stat. Mech.: Theory Exp. 2016, 064007 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Chirondojan and G.-L. Oppo for useful discussions. We acknowledge support from the project MIUR-PRIN2017 Coarse-grained description for non-equilibrium systems and transport phenomena (CO-NEST) n. 201798CZL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Lepri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iubini, S., Lepri, S., Livi, R., Politi, A., Politi, P. (2020). Nonequilibrium Phenomena in Nonlinear Lattices: From Slow Relaxation to Anomalous Transport. In: Kevrekidis, P., Cuevas-Maraver, J., Saxena, A. (eds) Emerging Frontiers in Nonlinear Science. Nonlinear Systems and Complexity, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-44992-6_8

Download citation

Publish with us

Policies and ethics