Skip to main content

Integrability and Nonlinear Waves

  • Chapter
  • First Online:
Emerging Frontiers in Nonlinear Science

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 32))

  • 1651 Accesses

Abstract

Major developments in the study of nonlinear wave equations were the discovery of the soliton, its connection to the eigenvalue of a linear operator and solutions of the underlying equations by the inverse scattering transform. Inverse scattering transform provides the solution to the initial value problem of a class of nonlinear equations. In this article the background, key ideas and methodology of inverse scattering transform are discussed in connection with some well-known physically important nonlinear equations including the Korteweg–de Vries and nonlinear Schrödinger equations. More recently a new class of nonlocal nonlinear Schrödinger type equations have been found to be integrable; they arise from new symmetries in the associated scattering problem that had not been previously known. The solution of these novel systems is also discussed in this review. Other methods of solution of soliton/integrable equations and comments regarding the future are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By solved we mean linearized in terms of integral equations.

References

  1. M.D. Kruskal, in Nonlinear Wave Motion. AMS Lectures in Applied Mathematics, vol. 15, ed. by A.C. Newell (American Mathematical Society, Providence, 1974), p. 61

    Google Scholar 

  2. N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)

    Article  ADS  Google Scholar 

  3. D.J. Korteweg, G. de Vries, Philos. Mag. 39, 442 (1895)

    Article  Google Scholar 

  4. E. Falcon, C. Laroche, S. Fauve, Phys. Rev. Lett. 89, 204501 (2002)

    Article  ADS  Google Scholar 

  5. J. Boussinesq, Mem. Pres. Acad. Sci. Paris Ser. 2(23), 1 (1877)

    Google Scholar 

  6. J.S. Russell, in Proceedings of the 14th meeting of the British Association for the Advancement of Science, ed. by J. Murray (London, 1844), p. 311

    Google Scholar 

  7. M.J. Ablowitz, Nonlinear Dispersive Waves, Asymptotic Analysis and Solitons (Cambridge University Press, Cambridge, 2011)

    Book  MATH  Google Scholar 

  8. R.M. Miura, C.S. Gardner, M.D. Kruskal, J. Math. Phys. 9, 1204 (1968)

    Article  ADS  Google Scholar 

  9. R.M. Miura, J. Math. Phys. 9, 1202 (1968)

    Article  ADS  Google Scholar 

  10. C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  Google Scholar 

  11. P.D. Lax, Commun. Pure Appl. Math 21, 467 (1968)

    Article  Google Scholar 

  12. V.E. Zakharov, A.B. Shabat, Sov. Phys., J. Exp. Theor. Phys. 34, 62 (1972)

    Google Scholar 

  13. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Stud. Appl. Math. 53, 249 (1974)

    Article  Google Scholar 

  14. M.J. Ablowitz, H. Segur, Solitons and Inverse Scattering Transform. Studies in Applied Mathematical, vol. 4 (SIAM, Philadelphia, 1981)

    Google Scholar 

  15. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  16. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. K.G. Makris, R. El Ganainy, D.N. Christodoulides, Z.H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008)

    Article  ADS  Google Scholar 

  18. Z.H. Musslimani, K.G. Makris, R. El Ganainy, D.N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008)

    Article  ADS  Google Scholar 

  19. C.E. Rüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Nat. Phys. 6, 192 (2010)

    Article  Google Scholar 

  20. M.J. Ablowitz, Z.H. Musslimani, Phys. Rev. Lett. 110, 064105 (2013)

    Article  ADS  Google Scholar 

  21. M.J. Ablowitz, Z.H. Musslimani, 29, 915 (2016)

    Google Scholar 

  22. M.J. Ablowitz, Z.H. Musslimani, Phys. Rev. E 90, 032912 (2014)

    Article  ADS  Google Scholar 

  23. A.S. Fokas, Nonlinearity 29, 319 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. M.J. Ablowitz, Z.H. Musslimani, Stud. Appl. Math. 139, 7 (2017)

    Article  MathSciNet  Google Scholar 

  25. M.J. Ablowitz, Z.H. Musslimani, J. Phys. A: Math. Theor. 52, 15LT02 (2019)

    Article  MathSciNet  Google Scholar 

  26. J. Yang, Phys. Rev. E 98, 042202 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. S.V. Manakov, Sov. Phys. JETP 38, 693 (1974)

    ADS  Google Scholar 

  28. M.J. Ablowitz, B. Prinari, A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  29. S.P. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons. The inverse Scattering Method (Plenum, New York, 1984)

    MATH  Google Scholar 

  30. F. Calogero, A. Degasperis, Spectral Transform and Solitons I (North Holland, Amsterdam, 1982)

    MATH  Google Scholar 

  31. L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer, Berlin, 1987)

    Book  MATH  Google Scholar 

  32. M.J. Ablowitz, H. Segur, Stud. Appl. Math. 57, 13 (1977)

    Article  ADS  Google Scholar 

  33. H. Segur, M.J. Ablowitz, Phys. D 3, 165 (1981)

    Article  Google Scholar 

  34. V.E. Zakharov, S.V. Manakov, J. Exp. Theor. Phys. 44, 106 (1976)

    ADS  Google Scholar 

  35. P. Deift, X. Zhou, Bull. Am. Math. Soc. 26, 119 (1992)

    Article  Google Scholar 

  36. I.M. Krichever, Funct. Anal. Appl. 11, 12 (1977)

    Article  Google Scholar 

  37. E.D. Belekolos, A.I. Bobenko, V.Z. Enol’skii, A.R. Its, V.B. Matveev, Algebro-geometrical Approach to Nonlinear Integrable Equations (Springer, Berlin, 1994)

    Google Scholar 

  38. M.J. Ablowitz, A.S. Fokas, Complex Variables: Introduction and Applications, 2nd edn. (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  39. R. Beals, R.R. Coifman, Commun. Pure Appl. Math. 38, 29 (1985)

    Article  Google Scholar 

  40. G. Fibich, The Nonlinear Schrödinger Equation, Singular Solutions and Collapse (Springer, Heidelberg, 2015)

    Book  MATH  Google Scholar 

  41. V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 37, 823 (1973)

    ADS  Google Scholar 

  42. M.J. Ablowitz, G. Biondini, B. Prinari, Inverse Prob. 23, 1711 (2007)

    Article  ADS  Google Scholar 

  43. B. Prinari, M.J. Ablowitz, G. Biondini, J. Math. Phys. 47, 063508 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  44. M.J. Ablowitz, X.-D. Luo, Z.H. Musslimani, J. Math. Phys. 59, 0011501 (2018)

    Article  MathSciNet  Google Scholar 

  45. V.S. Buslaev, V.N. Fomin, Vestnik Leningrad Univ. 17, 56 (1962)

    MathSciNet  Google Scholar 

  46. A. Cohen, Commun. Part. Differ. Eq. 9, 751 (1984)

    Google Scholar 

  47. A. Cohen, T. Kappeler, Indiana U. Math. J. 34, 127 (1985)

    Article  Google Scholar 

  48. T. Aktosun, J. Math. Phys. 40, 5289 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  49. I. Egorova, Z. Gladka, T. Luc Lange, G. Teschl, Zh. Mat. Fiz. Anal. Geom. 11, 123 (2015)

    Google Scholar 

  50. M.J. Ablowitz, X.-D. Luo, J.T. Cole, J. Math. Phys. 59, 091406 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  51. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  52. T. Miwa, M. Jimbo, E. Date, Solitons, Differential Equations, Symmetries and Infinite Dimensional Lie Algebras (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  53. G. Biondini, Y. Kodama, J. Phys. A: Math. Gen. 36, 10529 (2003)

    Article  Google Scholar 

  54. S. Chakravarty, Y. Kodama, Stud. Appl. Math. 123, 83 (2009)

    Article  MathSciNet  Google Scholar 

  55. Y. Kodama, Solitons in Two-Dimensional Shallow Water (SIAM, Philadelphia, 2018)

    Book  Google Scholar 

  56. M.J. Ablowitz, D.E. Baldwin, Phys. Rev. E 86, 036305 (2012)

    Article  ADS  Google Scholar 

  57. V.B. Matveev, M.A. Salle, Darboux Transformation and Solitons (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  58. C. Rogers, W.K. Schief, Bäcklund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  59. F.W. Nijhoff, G.R.W. Quispel, H.W. Capel, Phys. Lett. A 97, 125 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  60. V.E. Zakharov, A.B. Shabat, Funct. Anal. Appl. 13, 166 (1979)

    Article  Google Scholar 

  61. V.E. Zakharov, S.V. Manakov, Funct. Anal. Appl. 19, 89 (1985)

    Article  Google Scholar 

  62. R. Camassa, D.D. Holm, Phys. Rev. Lett. 71, 1661 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  63. S. Dyachenko, D. Zakharov, V. Zakharov, Phys. D 333, 148 (2016)

    Article  MathSciNet  Google Scholar 

  64. D. Zakharov, V. Zakharov, Generalized primitive potentials, arXiv:1907.05038

  65. A.S. Fokas, A Unified Approach to Boundary Value Problems (SIAM, Philadelphia, 2007)

    Google Scholar 

  66. S.V. Manakov, P.M. Santini, JETP Lett. 83, 462 (2006)

    Article  Google Scholar 

  67. S.V. Manakov, P.M. Santini, Phys. Lett. A. 359, 613 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  68. S.V. Manakov, P.M. Santini, J. Phys. A; Math. Theor. 42, 095203 (2009)

    Article  ADS  Google Scholar 

  69. J. Hietarinta, N. Joshi, F.W. Nijhoff, Discrete Systems and Integrability (Cambridge University Press, Cambridge, 2016)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

MJA was partially supported by NSF under Grant No. DMS-1712793.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Ablowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ablowitz, M.J. (2020). Integrability and Nonlinear Waves. In: Kevrekidis, P., Cuevas-Maraver, J., Saxena, A. (eds) Emerging Frontiers in Nonlinear Science. Nonlinear Systems and Complexity, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-44992-6_7

Download citation

Publish with us

Policies and ethics