Skip to main content

Physics-Informed Learning Machines for Partial Differential Equations: Gaussian Processes Versus Neural Networks

  • Chapter
  • First Online:

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 32))

Abstract

We review and compare physics-informed learning models built upon Gaussian processes and deep neural networks for solving forward and inverse problems governed by linear and nonlinear partial differential equations. We define a unified data model on which Gaussian processes, physics-informed Gaussian processes, neural networks, and physics-informed neural networks are based. We develop continuous-time and discrete-time models to facilitate different application scenarios. We present a connection between a Gaussian process and an infinitely wide neural network, which enables us to obtain a “best” kernel, which is determined directly by the data. We demonstrate the implementation of physics-informed Gaussian processes and physics-informed neural networks using a pedagogical example. Additionally, we compare physics-informed Gaussian processes and physics-informed neural networks for two nonlinear partial differential equations, i.e. the 1D Burgers’ equation and the 2D Navier–Stokes, and provide guidance in choosing the proper machine learning model according to the problem type, i.e. forward or inverse problem, and the availability of data. These new methods for solving partial differential equations governing multi-physics problems do not require any grid, and they are simple to implement, and agnostic to specific application. Hence, we expect that variants and proper extensions of these methods will find broad applicability in the near future across different scientific disciplines but also in industrial applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Raissi, P. Perdikaris, G.E. Karniadakis, J. Comput. Phys. 348, 683 (2017)

    ADS  MathSciNet  Google Scholar 

  2. M. Raissi, P. Perdikaris, G.E. Karniadakis, J. Comput. Phys. 335, 736 (2017)

    ADS  MathSciNet  Google Scholar 

  3. M. Raissi, P. Perdikaris, G.E. Karniadakis, SIAM, J. Sci. Comput. 40, A172 (2018)

    Google Scholar 

  4. M. Raissi, G.E. Karniadakis, J. Comput. Phys. 357, 125 (2018)

    ADS  MathSciNet  Google Scholar 

  5. Z. Ghahramani, Nature 521(7553), 452 (2015)

    ADS  Google Scholar 

  6. M.I. Jordan, T.M. Mitchell, Science 349(6245), 255 (2015)

    ADS  MathSciNet  Google Scholar 

  7. M. Dissanayake, N. Phan-Thien, Commun. Numer. Meth. Eng. 10, 195 (1994)

    Google Scholar 

  8. B.P. van Milligen, V. Tribaldos, J. Jiménez, Phys. Rev. Lett. 75, 3594 (1995)

    ADS  Google Scholar 

  9. I.E. Lagaris, A. Likas, D.I. Fotiadis, I.E.E.E. Trans, Neural Netw. 9, 987 (1998)

    Google Scholar 

  10. M. Raissi, P. Perdikaris, G.E. Karniadakis, J. Comput. Phys. 378, 686 (2019)

    ADS  MathSciNet  Google Scholar 

  11. C.A. Micchelli, Y. Xu, H. Zhang, J. Mach. Learn. Res. 7, 2651 (2006)

    MathSciNet  Google Scholar 

  12. K. Hornik, M. Stinchcombe, H. White, Neural Netw. 2, 359 (1989)

    Google Scholar 

  13. G. Pang, Python codes for the numerical examples in this chapter (2019), https://github.com/Pang1987/pedagogical-example-PIGP-PINN. Accessed 27 Jan 2020

  14. C.E. Rasmussen, in Advanced Lectures on Machine Learning, ed. by O. Bousquet, U. von Luxburg, G. Rätsch (Springer, Berlin, 2003), p. 63

    Google Scholar 

  15. C. Finn, P. Abbeel, S. Levine, in 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, ed. by D. Precup, Y.W. Teh (Sidney, 2017), p. 1126

    Google Scholar 

  16. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, J. Mach, Learn. Res. 15, 1929 (2014)

    Google Scholar 

  17. S. Särkkä, in Artificial Neural Networks and Machine Learning – ICANN 2011, 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 2011. Lecture Notes in Computer Science, vol. 6791, ed. by T. Honkela, W. Duch, M. Girolami, S. Kaski (Springer, Berlin, 2011), p. 151

    Google Scholar 

  18. M. Abadi et al., in Proceedings of OSDI ’16. 12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, USA (2016), p. 265

    Google Scholar 

  19. G. Pang, L. Lu, G.E. Karniadakis, SIAM, J. Sci. Comput. 41, A2603 (2019)

    Google Scholar 

  20. G. Pang, L. Yang, G.E. Karniadakis, J. Comput. Phys. 384, 270 (2019)

    ADS  MathSciNet  Google Scholar 

  21. I.M. Sobol’, Zh Vychisl, Mat. Mat. Fiz. 7, 784 (1967)

    Google Scholar 

  22. D. Duvenaud, Ph.D. thesis (University of Cambridge, 2014)

    Google Scholar 

  23. B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning, arXiv:1611.01578

  24. S.H. Rudy, S.L. Brunton, J.L. Proctor, J.N. Kutz, Sci. Adv. 3, e1602614 (2017)

    ADS  Google Scholar 

  25. M. Raissi, A. Yazdani, G.E. Karniadakis, Hidden fluid mechanics: a Navier-Stokes informed deep learning framework for assimilating flow visualization data, arXiv:1808.04327

  26. A.G. Wilson, Z. Hu, R. Salakhutdinov, E.P. Xing, in Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016. JMLR Workshop and Conference Proceedings, vol. 51, ed. by A. Gretton, C.C. Robert. Cádiz (Spain, 2016), p. 370

    Google Scholar 

  27. A. Wilson, H. Nickisch, in Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, ed. by F. Bach, D. Blei (Lille, France, 2015), p. 1775

    Google Scholar 

  28. X. Meng, Z. Li, D. Zhang, G.E. Karniadakis, PPINN: parareal physics-informed neural network for time-dependent PDEs, arXiv:1909.10145

  29. L. Lu, X. Meng, Z. Mao, G.E. Karniadakis, DeepXDE: a deep learning library for solving differential equations, arXiv:1907.04502

  30. L. Le Gratiet, Ph.D. thesis (Université Paris Diderot, 2013)

    Google Scholar 

  31. G. Pang, P. Perdikaris, W. Cai, G.E. Karniadakis, J. Comput. Phys. 348, 694 (2017)

    ADS  MathSciNet  Google Scholar 

  32. X. Meng, G.E. Karniadakis, J. Comput. Phys. 401, 109020 (2020)

    MathSciNet  Google Scholar 

  33. J. Pathak, B. Hunt, M. Girvan, Z. Lu, E. Ott, Phys. Rev. Lett. 120, 024102 (2018)

    ADS  Google Scholar 

  34. J. Huang, SC19: NVIDIA CEO Jensen Huang on the expanding universe of HPC, https://www.youtube.com/watch?v=69nEEpdEJzU. Accessed 27 Jan 2020

Download references

Acknowledgements

This work was partially supported by AFOSR (FA9550-17-1-0013), Army Research Laboratory (W911NF-12-2-0023), and PHILMS (DE-SC0019453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Em Karniadakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pang, G., Karniadakis, G.E. (2020). Physics-Informed Learning Machines for Partial Differential Equations: Gaussian Processes Versus Neural Networks. In: Kevrekidis, P., Cuevas-Maraver, J., Saxena, A. (eds) Emerging Frontiers in Nonlinear Science. Nonlinear Systems and Complexity, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-44992-6_14

Download citation

Publish with us

Policies and ethics