Skip to main content

Genome Studies for Effective Management and Utilization of Coconut Genetic Resources

  • Chapter
  • First Online:
Coconut Biotechnology: Towards the Sustainability of the ‘Tree of Life’
  • 406 Accesses

Abstract

Coconut belongs to a typically South American subtribe (Attalinae), yet at the dawn of agriculture, it was in both the Indian and Pacific Oceans. How it reached this pre-historic distribution remains unclear. During the last 20 years, molecular markers have been developed to study coconut genetic diversity, assess gene flows and identify markers of agronomic traits. They have proven useful to identify coconut cultivars and to track genetic exchange between populations and human migrations. Two well-differentiated gene pools, originating from the Indian and the Pacific Oceans, were identified. Self-pollinating Dwarf coconuts resulted from a single domestication event in Southeast Asia. Markers for various agronomic traits were identified through linkage mapping and association studies. More recently, genome expression was studied in various organs, providing a representation of the coconut proteome and of its regulation, allowing to identify key genes involved in the metabolism of the endosperm and in somatic embryogenesis. Several research teams undertook its sequencing, and two draft sequences have been published. This large genome was recently assembled into 16 pseudomolecules by anchoring it on a linkage map. The biology of the coconut makes genetic improvement difficult. Genomic selection and marker-assisted selection can speed up the first stages of varietal development based on advanced generations of crosses between genetically distant populations. This will require profound changes in the methods used in field observation, aiming to acquire more phenotypic data at the individual level as well as the open availability of genomic resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DNA (deoxyribonucleic acid) is a molecule forming a long chain (the double helix) which holds the genetic information of a living organism. It is in the nucleus of the cell. It contains genes which are transcribed into messenger ribonucleic acid (mRNA), which are, in turn, translated into polypeptide chains in ribosomes. Other types of RNA are ribosomal RNA (rRNA), transfer RNA (tRNA), microRNA (miRNA), etc.

  2. 2.

    Central Plantation Crops Research Institute, India.

  3. 3.

    Centre International de Recherche en Agronomie pour le Développement, France

  4. 4.

    Centre National de Recherche Agronomique, Côte d’Ivoire.

  5. 5.

    NCBI is one of three major genomics and biological information repositories, located in the USA. The other ones are EMBL-EBI in Europe and DDBJ in Japan. NCBI proposes numerous databases such those devoted to non-redundant (nr) proteins and to Clusters of Orthologous Groups of proteins (COG). KEGG is the Kyoto Encyclopedia of Genes.

  6. 6.

    King Abdulaziz City for Science and Technology.

  7. 7.

    Chinese Academy of Sciences.

  8. 8.

    Indonesian Oil Palm Research Institute, Indonesia.

References

  • Aljohi HA, Liu W, Lin Q et al (2016) Complete sequence and analysis of coconut palm (Cocos nucifera) mitochondrial genome. PLoS One 11(10):e0163990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alsaihati B, Liu W, Lin Q (2014) Coconut genome de novo sequencing. In: Plant and animal genome XXII conference: plant and animal genome

    Google Scholar 

  • Altschul S, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anderson EC, Thompson EA (2001) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    Article  Google Scholar 

  • Andrade-Torres A, Oropeza C, Sáenz L et al (2011) Transient genetic transformation of embryogenic callus of Cocos nucifera. Biologia 66(5):790

    Article  CAS  Google Scholar 

  • Armero A, Baudouin L, Bocs S et al (2017) Improving transcriptome de novo assembly by using a reference genome of a related species: translational genomics from oil palm to coconut. PLoS One 12(3):e0173300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arunachalam V (2012) Genomics of cultivated palms. Elsevier, Amsterdam

    Google Scholar 

  • Ashburner GR, Thompson WK, Halloran GM (1997) RAPD analysis of South Pacific coconut palm populations. Crop Sci 37(5–6):992–997

    Article  Google Scholar 

  • Baker WJ, Couvreur TL (2013) Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. II. Diversification history and origin of regional assemblages. J Biogeogr 40(2):286–298

    Article  Google Scholar 

  • Bandupriya HDD, Dunwell JM (2016) Transcriptome analysis for discovering candidate genes involve in embryogenesis in coconut (Cocos nucifera L.) through 454 pyrosequencing. J Natl Sci Found Sri Lanka 43(4):319–336

    Google Scholar 

  • Bandupriya HDD, Gibbings JG, Dunwell JM (2014) Overexpression of coconut AINTEGUMENTA-like gene, CnANT, promotes in vitro regeneration in transgenic Arabidopsis. Plant Cell Tissue Organ Cult 116(1):67–79

    Article  CAS  Google Scholar 

  • Batugal P (2005) Coconut genetic resources. Bioversity International, Rome

    Google Scholar 

  • Batugal P, Bourdeix R, Baudouin L (2009) Coconut breeding. In: Breeding plantation tree crops: tropical species. Springer, New York, pp 327–373

    Chapter  Google Scholar 

  • Baudouin L, Lebrun P (2002) The development of a microsatellite kit and dedicated software for use with coconuts. Burotrop Bull 17:16–20

    Google Scholar 

  • Baudouin L, Lebrun P (2009) Coconut (Cocos nucifera L.) DNA studies support the hypothesis of an ancient Austronesian migration from Southeast Asia to America. Genet Resour Crop Evol 56(2):257–262

    Article  Google Scholar 

  • Baudouin L, Piry S, Cornuet JM (2004) Analytical Bayesian approach for assigning individuals to populations. J Hered 95(3):217–224

    Article  CAS  PubMed  Google Scholar 

  • Baudouin L, Lebrun P, Konan JL (2006) QTL analysis of fruit components in the progeny of a Rennell Island Tall coconut (Cocos nucifera L.) individual. Theor Appl Genet 112(2):258–268

    Article  CAS  PubMed  Google Scholar 

  • Baudouin L, Lebrun P, Berger A et al (2008) The Panama Tall and the Maypan hybrid coconut in Jamaica: did genetic contamination cause a loss of resistance to Lethal Yellowing? Euphytica 161(3):353–360

    Article  Google Scholar 

  • Baudouin L, Philippe R, Quaicoe RN et al (2009) General overview of genetic research and experimentation on coconut varieties tolerant/resistant to lethal yellowing. OCL Ol Corps Gras Lipides 16(2):127–131

    Article  Google Scholar 

  • Baudouin L, Gunn BF, Olsen KM (2014) The presence of coconut in southern Panama in pre-Columbian times: clearing up the confusion. Ann Bot 113(1):1–5

    Article  PubMed  Google Scholar 

  • Bioinformation and DDBJ Center (n.d.). Available from https://www.ddbj.nig.ac.jp/index-e.html. Accessed 1 July 2019

  • Bourdeix R, N’Cho YP, Sangaré A et al (1992) L’hybride de cocotier PB 121 amélioré, croisement du Nain Jaune Malais et de géniteurs Grand Ouest-Africain sélectionnés. Oléagineux 47(11):619–633

    Google Scholar 

  • Cardena R, Oropeza C, Zizumbo Villarreal D (1998) Leaf proteins as markers useful in the genetic improvement of coconut palms. Euphytica 102:81–86

    Article  CAS  Google Scholar 

  • Cardeña R, Ashburner GR, Oropeza C (2003) Identification of RAPDs associated with resistance to lethal yellowing of the coconut (Cocos nucifera L.) palm. Sci Hortic 98(3):257–263

    Article  CAS  Google Scholar 

  • CGRD Version 6.1 (2012). Available from http://www.cogentnetwork.org/cgrd-version-6-0-test-version. Accessed 12 Oct 2017

  • De Nucé De Lamothe M, Rognon F (1973) La production de semences hybrides chez le cocotier. Exploitation des champs semenciers. Oléagineux 28(6):287–291

    Google Scholar 

  • Devakumar K, Niral V, Jerard BA (2010) Microsatellite analysis of distinct coconut accessions from Agatti and Kavaratti Islands, Lakshadweep, India. Sci Hortic 125(3):309–315

    Article  CAS  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  PubMed  CAS  Google Scholar 

  • Duran Y, Rohde W, Kullaya A et al (1997) Molecular analysis of East African Tall coconut genotypes by DNA marker technology. J Genet Breed 51:279–288

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7(4):574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan H, Xiao Y, Yang Y et al (2013) RNA-Seq analysis of Cocos nucifera: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches. PLoS One 8(3):e59997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitas Neto M, Pereira TNS, Geronimo IGC et al (2016) Coconut genome size determined by flow cytometry: tall versus dwarf types. Genet Mol Res 15(1). https://doi.org/10.4238/gmr.15017470

  • Galvez HF, Lantican DV, Sison MLJ (2018) Coconut genetics and genomics for host insect resistance. In PAG – plant and animal genome XXVI conference, San Diego

    Google Scholar 

  • Gao L, Sun R, Liang Y (2014) Cloning and functional expression of a cDNA encoding stearoyl-ACP Δ9-desaturase from the endosperm of coconut (Cocos nucifera L.). Gene 549(1):70–76

    Article  CAS  PubMed  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC et al (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci 93(19):10274–10279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geethanjali S, Rukmani A, Rajakumar D et al (2017) Genetic diversity, population structure and association analysis in coconut (Cocos nucifera L.) germplasm using SSR markers. Plant Genet Resour 16(2):156–168

    Article  CAS  Google Scholar 

  • Gomez-Navarro C, Jaramillo C, Herrera F et al (2009) Palms (Arecaceae) from a Paleocene rainforest of northern Colombia. Am J Bot 96(7):1300–1312

    Article  PubMed  Google Scholar 

  • Gunn BF (2004) The phylogeny of the Cocoeae (Arecaceae) with emphasis on Cocos nucifera. Ann Mo Bot Gard 91(3):505–522

    Google Scholar 

  • Gunn BF, Baudouin L, Olsen KM (2011) Independent origins of cultivated coconut (Cocos nucifera L.) in the old world tropics. Plos One 6(6):e21143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn WJ (2002) A phylogenetic analysis of the Arecoid Line of palms based on plastid DNA sequence data. Mol Phylogenet Evol 23(2):189–204

    Article  CAS  PubMed  Google Scholar 

  • Hamelin C, Sempere G, Jouffe V (2013) TropGeneDB, the multi-tropical crop information system updated and extended. Nucleic Acids Res 41(D1):D1172–D1175

    Article  CAS  PubMed  Google Scholar 

  • Harries HC (1977) The Cape Verde region (1499 to 1549); the key to coconut in the Western hemisphere? Turrialba 27(3):227–231

    Google Scholar 

  • Harries HC, Clement CR (2014) Long-distance dispersal of the coconut palm by migration within the coral atoll ecosystem. Ann Bot 113(4):565–570

    Article  PubMed  Google Scholar 

  • Herran A, Estioko L, Becke D et al (2000) Linkage mapping and QTL analysis in coconut (Cocos nucifera L.). Theor Appl Genet 101(1):292–300

    Article  CAS  Google Scholar 

  • Huang YY, Matzke AJM, Matzke M (2013) Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PLoS One 8(8):e74736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YY, Lee CP, Fu JL et al (2014) De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation. G3-Genes Genom Genet 4(11):2147–2157

    Google Scholar 

  • Hubisz MJ, Falush D, Stephens M et al (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9(5):1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • IPGRI (1995) Descriptors for coconut (Cocos nucifera). International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Jay P, Bourdeix R, Potier F (1991) Polymorphism of coconut leaf polyphenols. In: Coconut breeding and management. Kerala Agricultural University, Vellanikkara, pp 60–68

    Google Scholar 

  • Kamaral LCJ, Dassanayaka PN, Perera KLNS et al (2016) SSR markers reveal the population structure of Sri Lankan yellow dwarf coconuts (Cocos nucifera L.). Tree Genet Genomes 12(6):116

    Article  Google Scholar 

  • KEGG: Kyoto Encyclopedia of Genes and Genomes (n.d.). Available from https://www.genome.jp/kegg/. Accessed 4 July 2019

  • Konan KJN, Koffi KE, Konan JL et al (2007) Microsatellite gene diversity in coconut (Cocos nucifera L.) accessions resistant to lethal yellowing disease. Afr J Biotechnol 6(4):341–347

    Google Scholar 

  • Konan KJN, Koffi KE, Konan K (2011) Microsatellite gene diversity within Philippines dwarf coconut palm (Cocos nucifera L.) resources at Port-Bouët, Côte d’Ivoire. Sci Res Essays 6(28):5986–5992

    Google Scholar 

  • Lantican DV, Susan RS, Alma OC et al (2018) The coconut genome: providing a reference sequence towards coconut varietal improvement. In PAG – plant and animal genome XXVI conference, San Diego

    Google Scholar 

  • Lantican DV, Strickler SR, Canama AO et al (2019) De novo genome sequence assembly of dwarf coconut (Cocos nucifera L. ‘Catigan Green Dwarf’) provides insights into genomic variation between coconut types and related palm species. G3-Genes Genome Genet. https://doi.org/10.1534/g3.119.400215

  • Lebrun P, N’Cho YP, Seguin M (1998) Genetic diversity in coconut (Cocos nucifera L.) revealed by restriction fragment length polymorphism (RFLP) markers. Euphytica 101:103–108

    Article  CAS  Google Scholar 

  • Lebrun P, Baudouin L, Grivet L et al (1999) Genetic diversity of coconut trees. RFLP study of the large collection of the M. Delorme station in Côte d’Ivoire

    Google Scholar 

  • Lebrun P, Baudouin L, Bourdeix R et al (2001) Construction of a linkage map of the Rennell Island Tall coconut type (Cocos nucifera L.) and QTL analysis for yield characters. Genome 44:962–970

    Article  CAS  PubMed  Google Scholar 

  • Lebrun P, Baudouin L, Myrie W et al (2007) Recent lethal yellowing outbreak: why is the Malayan Yellow Dwarf Coconut no longer resistant in Jamaica? Tree Genet Genomes 4(1):125–131

    Article  Google Scholar 

  • Liang Y, Yuan Y, Liu T et al (2014) Identification and computational annotation of genes differentially expressed in pulp development of Cocos nucifera L. by suppression subtractive hybridization. BMC Plant Biol 14:205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Tang H, Li D et al (2011) Genetic diversity of coconut cultivars in China by microsatellite (SSR) markers. Mol Plant Breed 2. https://doi.org/10.5376/mpb.2011.02.0012

  • Manimekalai R, Nagarajan P (2006) Assessing genetic relationships among coconut (Cocos nucifera L.) accessions using inter simple sequence repeat markers. Sci Hortic 108(1):49–54

    Article  CAS  Google Scholar 

  • Martin G, Baurens FC, Droc G (2016) Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics 17:243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez RT, Baudouin L, Berger A et al (2010) Characterization of the genetic diversity of the Tall coconut (Cocos nucifera L.) in the Dominican Republic using microsatellite (SSR) markers. Tree Genet Genomes 6(1):73–81

    Article  Google Scholar 

  • Masumbuko LI, Sinje S, Kullaya A (2014) Genetic diversity and structure of East African Tall Coconuts in Tanzania using RAPD markers. Open J Genet 4(02):175–181

    Article  Google Scholar 

  • Maurice EO, Najya M, Kimani NC et al (2016) Assessment of the genetic diversity of Kenyan coconut germplasm using simple sequence repeat (SSR) markers. Afr J Biotechnol 15(40):2215–2223

    Article  Google Scholar 

  • Mauro-Herrera M, Meerow AW, Perera L et al (2010) Ambiguous genetic relationships among coconut (Cocos nucifera L.) cultivars: the effects of outcrossing, sample source and size, and method of analysis. Genet Resour Crop Evol 57(2):203–217

    Article  Google Scholar 

  • Meerow AW, Wisser RJ, Brown JS et al (2003) Analysis of genetic diversity and population structure within Florida coconut (Cocos nucifera L.) germplasm using microsatellite DNA, with special emphasis on the Fiji Dwarf cultivar. Theor Appl Genet 106:715–726

    Article  PubMed  Google Scholar 

  • Meerow AW, Noblick L, Borrone JW et al (2009) Phylogenetic analysis of seven WRKY genes across the palm subtribe Attaleinae (Arecaceae) identifies Syagrus as sister group of the coconut. PLoS One 4(10):e7353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meerow AW, Noblick L, Salas-Leiva DE et al (2014) Phylogeny and historical biogeography of the cocosoid palms (Arecaceae, Arecoideae, Cocoseae) inferred from sequences of six WRKY gene family loci. Cladistics 31(5):509–534

    Article  PubMed  Google Scholar 

  • N’Cho YP, Sangaré A, Bourdeix R et al (1993) Evaluation de quelques écotypes de cocotier par une approche biométrique. 1. Etude des populations de Grands. Oléagineux 48(3):121–132

    Google Scholar 

  • National Center for Biotechnology Information (n.d.). Available from https://www.ncbi.nlm.nih.gov/. Accessed 1 July 2019

  • Nayar NM (2017) The coconut, phylogeny, origin, and spread. Academic, London

    Google Scholar 

  • Nejat N, Cahill DM, Vadamalai G et al (2015) Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Gen Genomics 290(5):1899–1910

    Article  CAS  Google Scholar 

  • Noblick LR, Hahn WJ, Griffith MP (2013) Structural cladistic study of Cocoseae, subtribe Attaleinae (Arecaceae): evaluating taxonomic limits in Attaleinae and the neotropical genus Syagrus. Brittonia 65(2):232–261

    Article  Google Scholar 

  • Ohler J (1999) Coconut management. Intermediate Technology Publications Ltd. (FAO), London

    Google Scholar 

  • Ooijen J (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res Camb 93:343–349

    Article  Google Scholar 

  • PalmComparomics (2017). Available from http://palm-comparomics.southgreen.fr/. Accessed 12 Oct 2017

  • Parthasarathy V, Geethalakshmi P, Niral V (2004) Analysis of coconut cultivars and hybrids using isozyme polymorphism. Acta Bot Croat 63(1):69–74

    CAS  Google Scholar 

  • Patiño VM (1963) Plantas cultivadas y animales domésticos en América equinoccial. Tomo I: frutales. Imprenta Departamental, Cali

    Google Scholar 

  • Perera L, Russel JR, Provan J et al (1998) Evaluating genetic relationships between indigenous coconut (Cocos nucifera L.) accessions from Sri Lanka by means of AFLP profiling. Theor Appl Genet 96:545–550

    Article  CAS  PubMed  Google Scholar 

  • Perera L, Russell JR, Provan J et al (1999) Identification and characterization of microsatellite loci in coconut (Cocos nucifera L.) and the analysis of coconut populations in Sri Lanka. Mol Ecol 8(2):335–346

    Article  Google Scholar 

  • Perera L, Russell JR, Provan J et al (2000) Use of microsatellite DNA markers to investigate the level of genetic diversity and population genetic structure of coconut (Cocos nucifera L.). Genome 43(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Perera L, Russell JR, Provan J et al (2001) Levels and distribution of genetic diversity of coconut (Cocos nucifera L., var. Typica form typica) from Sri Lanka assessed by microsatellite markers. Euphytica 122(2):381–389

    Article  Google Scholar 

  • Perera L, Russell JR, Provan J et al (2003) Studying genetic relationships among coconut varieties/populations using microsatellite markers. Euphytica 132(1):121–128

    Article  CAS  Google Scholar 

  • Perera L, Baudouin L, Bourdeix R (2011) Coconut palms on the edge of the desert: genetic diversity of Cocos nucifera in Oman. CORD 27(1):9–19

    Google Scholar 

  • Perera L, Baudouin L, Mackay I (2016) SSR markers indicate a common origin of self-pollinating dwarf coconut in South-East Asia under domestication. Sci Hortic 211:255–262

    Article  Google Scholar 

  • Perera L, Manimekalai R, Sudarsono S et al (2017) Biotechnology of plantation crops: coconut, pp 219–239

    Google Scholar 

  • Pérez-Núñez MT, Souza R, Sáenz L et al (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM et al (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95(6):536–539

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puch-Hau C, Oropeza-Salín C, Peraza-Echeverría S et al (2015) Molecular cloning and characterization of disease-resistance gene candidates of the nucleotide binding site (NBS) type from Cocos nucifera L. Physiol Mol Plant Pathol 89:87–96

    Article  CAS  Google Scholar 

  • Puch-Hau C, Oropeza C, Góngora-Paredes M (2016) New insights into the evolutionary history of resistance gene candidates in coconut palms and their expression profiles in palms affected by lethal yellowing disease. Genes Genomics 38(9):793–807

    Article  CAS  Google Scholar 

  • Rajesh MK, Arunachalam V, Nagarajan P et al (2008a) Genetic survey of 10 Indian coconut landraces by simple sequence repeats (SSRs). Sci Hortic 118(4):282–287

    Article  CAS  Google Scholar 

  • Rajesh MK, Nagarajan P, Jerard BA et al (2008b) Microsatellite variability of coconut accessions (Cocos nucifera L.) from Andaman and Nicobar Islands. Curr Sci 94(12):1627–1631

    Google Scholar 

  • Rajesh MK, Jerard BA, Preethi P et al (2013) Development of a RAPD-derived SCAR marker associated with tall-type palm trait in coconut. Sci Hortic 150:312–316

    Article  CAS  Google Scholar 

  • Rajesh MK, Samsudeen K, Jerard BA et al (2014) Assessment of genetic diversity and phylogenetic relationships among coconut populations from Amini and Kadmat Islands, Lakshadweep (India). Emir J Food Agric 26(10):898–906

    Article  Google Scholar 

  • Rajesh MK, Rachana KE, Naganeeswaran SA et al (2015) Identification of expressed resistance gene analog sequences in coconut leaf transcriptome and their evolutionary analysis. Turk J Agric For 39:489–502

    Article  Google Scholar 

  • Ribeiro FE, Baudouin L, Lebrun P et al (2010) Population structures of Brazilian tall coconut (Cocos nucifera L.) by microsatellite markers. Genet Mol Biol 33(4):696–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribeiro FE, Baudouin L, Lebrun P et al (2013) Genetic diversity in Brazilian tall coconut populations by microsatellite markers. Crop Breed Appl Biotechnol 13(4):356–362

    Article  CAS  Google Scholar 

  • Riedel M, Riederer M, Becker D et al (2009) Cuticular wax composition in Cocos nucifera L.: physicochemical analysis of wax components and mapping of their QTLs onto the coconut molecular linkage map. Tree Genet Genomes 5(1):53–69

    Article  Google Scholar 

  • Rivera R, Edwards KJ, Barker JHA (1999) Isolation and characterization of polymorphic microsatellites in Cocos nucifera L. Genome 42(4):668–675

    Article  CAS  PubMed  Google Scholar 

  • Rohde W, Kullaya A, Rodriguez J (1995) Genome analysis of Cocos nucifera L. by PCR amplification of spacer sequences separating a subset of copia-lide EcoRI repetitive elements. J Genet Breed 49(2):179–186

    CAS  Google Scholar 

  • Saensuk C, Wanchana S, Choowongkomon K et al (2016) De novo transcriptome assembly and identification of the gene conferring a “pandan-like” aroma in coconut (Cocos nucifera L.). Plant Sci 252:324–334

    Article  CAS  PubMed  Google Scholar 

  • Santos GA, Batugal PA, Othman A (1996) Manual on standardized research techniques in coconut breeding. IPGRI, Rome

    Google Scholar 

  • Shalini KV, Manjunatha S, Lebrun P (2007) Identification of molecular markers associated with mite resistance in coconut (Cocos nucifera L.). Genome 50(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Ong-Abdullah M, Low ETL et al (2013) Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature 500(7462):335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava R, Srivastava G (2014) Fossil fruit of Cocos L. (Arecaceae) from Maastrichtian-Danian sediments of central India and its phytogeographical significance. Acta Palaeobot 54(1):67–75

    Article  Google Scholar 

  • Teulat B, Aldam C, Trehin R (2000) An analysis of genetic diversity in coconut (Cocos nucifera) populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs. Theor Appl Genet 100(5):764–771

    Article  CAS  Google Scholar 

  • The European Bioinformatics Institute < EMBL-EBI (n.d.). Available from https://www.ebi.ac.uk/. Accessed 1 July 2019

  • Tripathi RP, Mishra SN, Sharma MP (1999) Cocos nucifera like petrified fruit from the Tertiary of Amarkantak, M.P, India. Palaeobotanist 48(3):251–255

    Google Scholar 

  • Tropgene (2013). Available from http://tropgenedb.cirad.fr/tropgene/JSP/interface.jsp?module=COCONUT. Accessed 19 May 2017

  • Upadhyay A, Jayadev K, Manimekalai R et al (2004) Genetic relationship and diversity in Indian coconut accessions based on RAPD markers. Sci Hortic 99(3–4):353–362

    Article  CAS  Google Scholar 

  • Viveka AT, Moossab F (2016) Identification of novel micro RNAs and their targets in Cocos nucifera–a bioinformatics approach. Biosci Biotechnol Res Commun 9(3):481–488

    Article  Google Scholar 

  • Wilson MA, Gaut B, Clegg MT (1990) Chloroplast DNA evolves slowly in the palm family (Arecaceae). Mol Biol Evol 7(4):303–314

    CAS  PubMed  Google Scholar 

  • Xiao Y, Xu P, Fan H et al (2017) The genome draft of coconut (Cocos nucifera). GigaScience 6(11):gix095

    Google Scholar 

  • Yong X, Yi L, Yaodong Y et al (2013) Development of microsatellite in Cocos nucifera and their application in evaluating the level of genetic diversity of Cocos nucifera. Plant OMICS J 6(3):193–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Baudouin .

Editor information

Editors and Affiliations

Appendix: Genomic Resources for Coconut – Databases, Data Sets and Useful Tools

Appendix: Genomic Resources for Coconut – Databases, Data Sets and Useful Tools

The CGRD platform (“CGRD Version 6.1” 2012) offers a wealth of data on ex situ coconut genetic resource collections. It provides information on the microsatellite kit for coconut and data on allele frequencies in many cultivars. Much more complete is the coconut part of TropGeneDB (Hamelin et al. 2013; “Tropgene” 2013). It holds genotypic data on 1791 individuals using up to 30 microsatellite markers. The QTL section lists 63 QTLs for 15 traits, and the marker section documents 296 SSR markers, of which 72 are mapped (along with 196 AFLP and 6 RFLP markers).

PalmComparomics (Armero et al. 2017; “PalmComparomics” 2017) is devoted to comparative genomics of palms. It was constructed before the coconut genome sequence was available and uses the oil palm genome sequence (Singh et al. 2013), as its backbone. In this environment, the user can identify coconut genes matching a given sequence (blast) or, using a number of keywords (annotation terms, gene ontologies, etc.), explore coconut metabolic pathways and more. The site will be considerably enhanced once the coconut genome sequence is integrated. Of course, large amounts of data can be recovered from international databases such as NCBI (“National Center for Biotechnology Information” n.d.), DDBJ (“Bioinformation and DDBJ Center” n.d.) and EMBL-EBI (“The European Bioinformatics Institute < EMBL-EBI” n.d.) and various other specialized databases such as KEGG (“KEGG: Kyoto Encyclopedia of Genes and Genomes” n.d.) and many others.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baudouin, L. (2020). Genome Studies for Effective Management and Utilization of Coconut Genetic Resources. In: Adkins, S., Foale, M., Bourdeix, R., Nguyen, Q., Biddle, J. (eds) Coconut Biotechnology: Towards the Sustainability of the ‘Tree of Life’. Springer, Cham. https://doi.org/10.1007/978-3-030-44988-9_7

Download citation

Publish with us

Policies and ethics