Skip to main content

Development of the Atlas and Its Variations

  • Chapter
  • First Online:
The Chiari Malformations
  • 817 Accesses

Abstract

The atlas usually forms from three primary ossification centers and no secondary ossification centers. The posterior arch arises from the lateral dense zone of the first cervical sclerotome. In contrast, the anterior arch is formed from the hypochordal bow of the first cervical sclerotome. Interestingly, this is the only area of the spine where the hypochordal bow or cells similar to it are involved in formation of the vertebral column.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dietrich S, Kessel M. The vertebral column. In: Thorogood P, editor. Embryos, genes and birth defects. Chichester: Wiley; 1997. p. 281–302.

    Google Scholar 

  2. Pang D, Thompson D. Embryology and bony malformations of the craniovertebral junction. Childs Nerv Syst. 2011;4:523–64.

    Article  Google Scholar 

  3. Muller F, O’Rahilly R. Segmentation in staged human embryos: the occipito-cervical region revisited. J Anat. 2003;3:297–315.

    Article  Google Scholar 

  4. Pourquie O. Vertebrate somitogenesis: a novel paradigm for animal segmentation? Int J Dev Biol. 2003;47:587–603.

    Google Scholar 

  5. Sawada A, Shinya M, Jiang YJ, Kawakami A, Kuroiwa A, Takeda H. Fgf/MAPK signaling is a crucial positional cue in somite boundary formation. Development. 2001;128:4873–80.

    CAS  PubMed  Google Scholar 

  6. Dubrulle J, McGrew MJ, Pourquie O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell. 2001;106:219–32.

    Article  CAS  Google Scholar 

  7. Christ B, Wilting J. From somites to vertebral column. Ann Anat. 1992;174:23–32.

    Article  CAS  Google Scholar 

  8. Koseki H, Wallin J, Wilting J, Mizutani Y, Kispert A, Ebensperger Cm Herrmann BG, Christ B, Balling R. A role for Pax-1 as mediator of notochordal signals during the dorsoventral specification of vertebrae. Development. 1993;119:649–60.

    CAS  PubMed  Google Scholar 

  9. Karwacki GM, Schneider JF. Normal ossification patterns of atlas and axis: a CT study. AJNR Am J Neuroradiol. 2012;33:1882–7.

    Article  CAS  Google Scholar 

  10. Junewick JJ, Chin MS, Meesa IR, Ghori S, Boynton SJ, Luttenton CR. Ossification patterns of the atlas vertebra. AJR Am J Roentgenol. 2011;197:229–1234.

    Article  Google Scholar 

  11. Thavarajah D, McKenna P. Congenital absence of the anterior arch of the atlas: a normal variant. Ann R Coll Surg Engl. 2012;94:208–9.

    Article  Google Scholar 

  12. Petraglia AL, Childs SM, Walker CT, Hogg J, Bailes JE, Lively MW. Bipartite atlas in a collegiate football player – not necessarily a contraindication for return-to-play: a case report and review of the literature. Surg Neurol Int. 2012;3:126.

    Article  Google Scholar 

  13. Jans C, Mahieu G, Van Riet R. Bipartite atlas mimicking traumatic atlantoaxial instability following a rugby tackle. BMJ Case Reports. 2009;2009:bcr0420091824.

    Article  Google Scholar 

  14. Hu Y, Ma W, Xu R. Transoral osteosynthesis C1 as a function-preserving option in the treatment of bipartite atlas deformity: a case report. Spine. 2009;34:418–21.

    Article  Google Scholar 

  15. Krishnamurthy A, Nayak SR, Khan S, Prabhu LV, Ramanathan LA, Ganesh Kumar C, Prasad SA. Arcuate foramen of atlas: incidence, phylogenetic and clinical significance. Romanian J Morphol Embryol. 2007;48:263–6.

    CAS  Google Scholar 

  16. Le Minor JM, Trost O. Bony ponticles of the atlas (C1) over the groove for the vertebral artery in humans and primates: polymorphism and evolutionary trends. Am J Phys Anthro. 2004;125:16–29.

    Article  Google Scholar 

  17. Taitz C, Nathan H, Arensburg B. Anatomical observations of the foramina transversaria. J Neurol Neurosurg Psychiatry. 1978;41:170–6.

    Article  CAS  Google Scholar 

  18. Karau B, Ogeng’o JA, Hasanali J, Odula PO. Morphometry and variations of bony ponticles of the atlas vertebrae (C1) in Kenyans. Int J Morphol. 2010;28:1019–24.

    Article  Google Scholar 

  19. Mitchell J. The incidence and dimensions of the retroarticular canal of the atlas vertebra. Acta Anat. 1998a;163:113–20.

    Article  CAS  Google Scholar 

  20. Mitchell J. The incidence of the lateral bridge of the atlas vertebra. J Anat. 1998b;193:283–5.

    Article  Google Scholar 

  21. Paraskevas G, Papaziogas B, Tsonidis C, Kapetanos G. Gross morphology of the bridges over the vertebral artery groove on the atlas. Surg Radiol Anat. 2005;27:129–36.

    Article  Google Scholar 

  22. Tubbs RS, Johnson PC, Shoja MM, Loukas M, Oakes WJ. Foramen arcuale: anatomical study and review of the literature. J Neurosurg Spine. 2007;6:31–4.

    Article  Google Scholar 

  23. Bergman RA. Compendium of human anatomic variation: text, atlas, and world literature. Baltimore: Urban & Schwarzenberg; 1988.

    Google Scholar 

  24. Billmann F, Le Minor JM, Steinwachs M. Bipartition of the superior articular facets of the first cervical vertebra (atlas or C1): a human variant probably specific among primates. Ann Anat. 2007;189:79–85.

    Article  Google Scholar 

  25. Cardoso AC, Fontes RB, Tan LA, Rhoton AL Jr, Roh SW, Fessler RG. Biomechanical effects of the transcondylar approach on the craniovertebral junction. Clin Anat. 2015;28:683–9.

    Article  Google Scholar 

  26. Allen W. The varieties of the atlas in the human subject, and the homologies of its transverse processes. J Anat Physiol. 1879;14:18–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Klippel M, Feil A. The classic: a case of absence of cervical vertebrae with the thoracic cage rising to the base of the cranium (cervical thoracic cage). Clin Orthop. 1975;24:3–8.

    Article  Google Scholar 

  28. Clark CR. The cervical spine. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 198.

    Google Scholar 

  29. Adams MA, Lama P, Zehra U, Dolan P. Why do some intervertebral discs degenerate, when others (in the same spine) do not? Clin Anat. 2015;28:195–204.

    Article  Google Scholar 

  30. Bergman RA, Afifi A, Miyauchi R. Cervical vertebrae. http://www.anatomyatlases.org/AnatomicVariants/SkeletalSystem/Text/CervicalVertebrae.shtml. Accessed 9 Sept 2019.

  31. Devi BI, Shenoy SN, Panigrahi MK, Chandramouli BA, Das BS, Jayakumar PN. Anomaly of arch of atlas: a rare cause of symptomatic canal stenosis in children. Pediatr Neurosurg. 1997;26:214–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tubbs, R.S. (2020). Development of the Atlas and Its Variations. In: Tubbs, R., Turgut, M., Oakes, W. (eds) The Chiari Malformations. Springer, Cham. https://doi.org/10.1007/978-3-030-44862-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44862-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44861-5

  • Online ISBN: 978-3-030-44862-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics