Skip to main content

Advanced Imaging of Chiari I Malformations

  • Chapter
  • First Online:
The Chiari Malformations

Abstract

Chiari type I malformation (CM I), characterized by descent of part of the cerebellum and brain stem through the foramen magnum, is a relatively common imaging diagnosis with a reported incidence of 1–3.6% in children undergoing magnetic resonance imaging (MRI). Standard MRI sequences can establish the diagnosis of CM I rather easily. However, it remains neither sensitive nor specific for predicting symptoms and disease severity and does not contribute to prediction of postoperative success. The development of advanced MRI sequences and techniques has expanded the role of MRI in CM I disease assessment. Advanced imaging including cerebrospinal fluid (CSF) flow studies, cine cerebellar tonsillar motion, diffusion tensor imaging (DTI), and quantitative volumetrics of the posterior fossa and biometrics of the skull base have expanded our understanding of CM I disease pathophysiology, assessment of disease severity, and alterations in CSF flow dynamics, and in certain cases aid in selecting surgical candidates. The goal of this chapter is to review in detail established MR advanced imaging techniques such as CSF flow studies and cine cerebellar tonsillar motion in the diagnosis of CM I while introducing emerging techniques in the assessment of CM I such as DTI and volumetry of the posterior fossa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiari H. Über Veränderungen des Kleinhirns, des Pons und der Medulla oblongata infolge von congenitaler Hydrocephalie des Grosshirns. Denkschr der Kais Akad Wiss Wien mathnaturw 1896;63:71–116. (partially translated in Tubbs et al. (2016) Child Nerv Syst 32:1175–9).

    Google Scholar 

  2. Chiari H. Uber Veranderungen des Kleinhirns infolge von Hydrocephalie des Grosshirns. Dtsch med Wochenschr. 1891;17:1172–5 (translated by MARadkowski (1987) Pediatr Neurosci 13:3–8).

    Google Scholar 

  3. Drue LS, Percy AK, Cheek WR, Laurent JP. Chiari type I malformation in children. J Pediatr. 1989;115:573–6.

    Article  Google Scholar 

  4. Wu YW, Chin CT, Chan KM, Barkovich AJ, Ferriero DM. Pediatric Chiari I malformations: do clinical and radiologic features correlate? Neurology. 1999;53:1271–6.

    Article  CAS  PubMed  Google Scholar 

  5. Schwedt TJ, Guo Y, Rothner AD. “Benign” imaging abnormalities in children and adolescents with headache. Headache. 2006;46:387–98.

    Article  PubMed  Google Scholar 

  6. Barkovich A, Wippold FJ, Sherman JL, Citrin CM. Significance of cerebellar tonsillar position on MR. AJNR Am J Neuroradiol. 1986;7(5):795–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ishikawa M, Kikuchi H, Fujisawa I, Yonekawa Y. Tonsillar herniation on magnetic resonance imaging. Neurosurgery. 1988;22(1):77–81.

    Article  CAS  PubMed  Google Scholar 

  8. Spinos E, Laster DW, Moody DM, Ball MR, Witcofski RL, Kelly DL Jr. MR evaluation of Chiari I malformations at 0.15 T. AJNR Am J Neuroradiol. 1985;6(2):203–8.

    PubMed Central  Google Scholar 

  9. Aitken LA, Lindan CE, Sidney S, Gupta N, Barkovich AJ, Sorel M, et al. Chiari type I malformation in a pediatric population. Pediatr Neurol. 2009;40(6):449–54.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Strahle J, Muraszko KM, Kapurch J, Bapuraj JR, Garton HJ, Maher CO. Chiari malformation type I and syrinx in children undergoing magnetic resonance imaging. J Neurosurg Pediatr. 2011;8(2):205–13.

    Article  PubMed  Google Scholar 

  11. Poretti A, Ashmawy R, Garzon-Muvdi T, Jallo GI, Huisman TA, Raybaud C. Chiari I deformity in children: Pathogenetic, clinical, neuroimaging, and management aspects. Neuropediatrics. 2016;47:293–307.

    Article  PubMed  Google Scholar 

  12. Raybaud C, Jallo GI. Chiari I deformity in children: etiopathogenesis and radiological diagnosis. In: Manto M, Husiman TAGM, editors. Handbook of clinical neurology, vol 155. Elsevier. 2018. p. 24–48.

    Google Scholar 

  13. Castillo M, Wilson JD. Spontaneous resolution of a Chiari I malformation: MR demonstration. AJNR Am J Neuroradiol. 1995;16:1158–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Novegno F, Caldarelli M, Massa A, Chieffo D, Massimi L, Pettorinin B, et al. The natural history of the Chiari type 1 anomaly. J Neurosurg Pediatr. 2008;2:179–87.

    Article  PubMed  Google Scholar 

  15. Huang PH, Constantini S. “Acquired” Chiari I malformation case report. J Neurosurg. 1994;80:1099–102.

    Article  CAS  PubMed  Google Scholar 

  16. Leon TJ, Kuhn EN, Arynchyna AA, Smith PB, Tubbs RS, Johnston JM, et al. Patients with “benign” Chiari I malformations require surgical decompression at a low rate. J Neurosurg Pediatr. 2019;23(4):498–506.

    Article  PubMed  Google Scholar 

  17. Strahle J, Muraszko KM, Kapurch J, Bapuraj JR, Garton HJ, Maher CO. Natural history of Chiari malformation type I following decision for conservative treatment. J Neurosurg Pediatr. 2011;8(2):214–21.

    Article  PubMed  Google Scholar 

  18. Caldarelli M, Di Rocco C. Diagnosis of Chiari I malformation and related syringomyelia: radiological and neurophysiological studies. Childs Nerv Syst. 2004;20(5):332–5.

    Article  PubMed  Google Scholar 

  19. Chiapparini L, Saletti V, Solero CL, Bruzzone MG, Valentini LG. Neuroradiological diagnosis of Chiari malformations. Neurol Sci. 2011;32(3):283–6.

    Article  Google Scholar 

  20. Elster AD, Chen M. Chiari I malformations: clinical and radiologic reappraisal. Radiology. 1992;183(2):347–53.

    Article  CAS  PubMed  Google Scholar 

  21. Hekman KE, Aliaga L, Straus D, Luther A, Chen J, Sampat A, et al. Positive and negative predictors for good outcome after decompressive surgery for Chiari malformation type 1 as scored on the Chicago Chiari outcome scale. Neurol Res. 2012;34(7):694–700.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Godzik J, Kelly MP, Radmanesh A, Kim D, Holekamp TF, Smyth MD, et al. Relationship of syrinx size and tonsillar descent to spinal deformity in Chiari malformation type I with associated syringomyelia. J Neurosurg Pediatr. 2014;13(4):368–74.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yarbrough CK, Greenberg JK, Smyth MD, Leonard JR, Park TS, Limbrick DD Jr. External validation of the Chicago Chiari outcome scale. J Neurosurg Pediatr. 2014;13(6):679–84.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Singhal A, Cheong A, Steinbok P. International survey on the management of Chiari 1 malformation and syringomyelia: evolving worldwide opinions. Childs Nerv Syst. 2018;34:1177–82.

    Article  PubMed  Google Scholar 

  25. Schijman E, Steinbok P. International survey on the management of Chiari I malformation and syringomyelia. Childs Nerv Syst. 2004;20(5):341–8.

    Article  PubMed  Google Scholar 

  26. Fakhri A, Shah MN, Goyal MS. Advanced imaging of Chiari 1 malformations. Neurosurg Clin N Am. 2015;26:519–26.

    Article  PubMed  Google Scholar 

  27. Aboulezz AO, Sartor K, Geyer CA, Gado MH. Position of cerebellar tonsils in the normal population and in patients with Chiari malformation: a quantitative approach with MR imaging. J Comput Assist Tomogr. 1985;9(6):1033–6.

    Article  CAS  PubMed  Google Scholar 

  28. Smith BW, Strahle J, Bapuraj JR, Muraszko KM, Garton HJL, Maher CO. Distribution of cerebellar tonsil position: implications for understanding Chiari malformation. J Neurosurg. 2013;119(3):812–9.

    Article  PubMed  Google Scholar 

  29. Tubbs RS, Beckman J, Naftel RP, Chern JJ, Wellons JC 3rd, Rozzelle CJ, et al. Institutional experience with 500 cases of surgically treated pediatric Chiari malformation type I. J Neurosurg Pediatr. 2011;7(3):248–56.

    Article  PubMed  Google Scholar 

  30. Tubbs RS, Lyerly MJ, Loukas M, Shoja MM, Oakes WJ. The pediatric Chiari I malformation: a review. Childs Nerv Syst. 2007;23(11):1239–50.

    Article  PubMed  Google Scholar 

  31. Milhorat TH, Chou MW, Trinidad EM, Kula RW, Mandell M, Wolpert C, et al. Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery. 1999;44(5):1005–17.

    Article  CAS  PubMed  Google Scholar 

  32. Radmanesh A, Greenberg JK, Chatterjee A, Smyth M, Limbrick DD, Sharma A. Tonsillar pulsatility before and after surgical decompression for children with Chiari malformation type 1: an application for true fast imaging with steady state precession. Neuroradiology. 2015;57(4):387–93.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Strahle J, Muraszko KM, Garton HJL, Smith BW, Starr J, Kapurch JR, et al. Syrinx location and size according to etiology: identification of Chiari-associated syrinx. J Neurosurg Pediatr. 2015;16(1):1–9.

    Article  Google Scholar 

  34. Kelly MP, Guillaume T, Lenke LG. Spinal deformity associated with Chiari malformation. Neurosurg Clin N Am. 2015;26(4):579–85.

    Article  PubMed  PubMed Central  Google Scholar 

  35. McGirt MJ, Nimjee SM, Floyd J, Bulsara KR, George TM. Correlation of cerebrospinal fluid flow dynamics and headache in Chiari I malformation. Neurosurgery. 2005;56(4):716–21.

    Article  PubMed  Google Scholar 

  36. Hofkes SK, Iskandar BJ, Turski PA, Gentry LR, McCue JB, Haughton VM. Differentiation between Symptomatic Chiari I Malformation and Asymptomatic Tonsilar Ectopia by Using Cerebrospinal Fluid Flow Imaging: Initial Estimate of Imaging Accuracy. Radiology. 2007;245(2):532–40.

    Article  PubMed  Google Scholar 

  37. Haughton V, Mardal KA. Spinal fluid biomechanics and imaging: an update for neuroradiologists. AJNR Am J Neuroradiol. 2014;35(10):1864–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quigley MF, Iskandar B, Quigley ME, Nicosia M, Haughton V. Cerebrospinal fluid flow in foramen magnum: temporal and spatial patterns at MR imaging in volunteers and in patients with Chiari I malformation. Radiology. 2004;232(1):229–36.

    Article  PubMed  Google Scholar 

  39. Haughton VM, Korosec FR, Medow JE, Dolar MT, Iskandar BJ. Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants. AJNR Am J Neuroradiol. 2003;24:169–76.

    PubMed  PubMed Central  Google Scholar 

  40. Buell TJ, Heiss JD, Oldfield EH. Pathogenesis and cerebrospinal fluid hydrodynamics of the Chiari I malformation. Neurosurg Clin N Am. 2015;26:495–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hofkes S, Iskandar BJ, Turski PA, Gentry LR, McCue JB, Haughton VM. Differentiation between symptomatic Chiari I malformation and asymptomatic tonsillar ectopia by using cerebrospinal fluid imaging: initial estimate of the imaging accuracy. Radiology 2007;45:532–540.

    Google Scholar 

  42. Pinna G, Alessandrini F, Alfieri A, Rossi M, Bricolo A. Cerebrospinal fluid dynamic study in Chiari I malformation: implications for syrinx formation. Neurosurg Focus. 2003;8:E3.

    Google Scholar 

  43. Hiess JD, Patronas N, DeVroom HL, Shawker T, Ennis R, Kammerer W, et al. Elucidating the pathophysiology of syringomyelia. J Neurosurg. 1999;91(4):553–63.

    Article  Google Scholar 

  44. Oldfield EH, Muraszko K, Shawker TH, Patronas NJ. Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils. Implications for diagnosis and treatment. J Neurosurg. 1994;80(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  45. Bhadelia RA, Bogdan AR, Wolpert SM. Cerebrospinal fluid flow waveforms: analysis in patients with Chiari I malformation by means of gated phase-contrast MR imaging velocity measurements. Radiology. 1995;196:195–202.

    Article  CAS  PubMed  Google Scholar 

  46. Enzmann DR, Pelc NJ. Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology. 1991;178(2):467–74.

    Article  CAS  PubMed  Google Scholar 

  47. Wolpert SM, Bhadelia RA, Bogdan AR, Cohen AR. Chiari I malformations: assessment with phase-contrast velocity MR. AJNR Am J Neuroradiol. 1994;15(7):1299–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba SH, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Turk Neurosurg. 2014;84(1004):758–65.

    Google Scholar 

  49. Hofmann E, Warmuth-Metz M, Bendszus M, Solymosi L. Phase-contrast MR imaging of the cervical CSF and spinal cord: volumetric motion analysis in patients with Chiari I malformation. AJNR Am J Neuroradiol. 2000;21(1):151–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mauer UM, Gottschalk A, Mueller C, Weselek L, Kunz U, Schulz C. Standard and cardiac-gated phase-contrast magnetic resonance imaging in the clinical course of patients with Chiari malformation type I. Neurosurg Focus. 2011;31(3):E5.

    Article  PubMed  Google Scholar 

  51. Connor SE, O’Gorman R, Summers P, Simmons A, Moore EM, Chandler C, Jarosz JM. SPAMM, cine phase contrast imaging and fast spin-echo T2-weighted imaging in the study of intracranial cerebrospinal fluid (CSF) flow. Clin Radiol. 2001;56(9):763–72.

    Article  CAS  PubMed  Google Scholar 

  52. Nitz WR, Bradley WG Jr, Watanabe AS, Lee RR, Burgoyne B, O'Sullivan RM, Herbst MD. Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology. 1992;183(2):395–405.

    Article  CAS  PubMed  Google Scholar 

  53. Saloner D. The AAPM/RSNA physics tutorial for residents. An introduction to MR angiography. Radiographics. 1995;15(2):453–65.

    Article  CAS  PubMed  Google Scholar 

  54. Quigley MF, Iskander B, Quigley MA, Nicosia M, Haughton V. Cerebrospinal fluid flow in the foramen magnum: temporal and spatial patterns at MR imaging in volunteers and in patients with Chiari I malformation. Radiology. 2004;232:229–36.

    Article  PubMed  Google Scholar 

  55. Brugieres P, Idy-Peretti I, Iffenecker C, Parker F, Odile J, Hurth M, et al. CSF flow measurement in syringomyelia. AJNR Am J Neuroradiol. 2000;21:1785–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Armonda RA, Citrin CM, Foley KT, Ellenbogen RG. Quantitative cinemode magnetic resonance imaging of Chiari I malformations: an analysis of cerebrospinal fluid dynamics. Neurosurgery. 1994;35:214–24.

    Article  CAS  PubMed  Google Scholar 

  57. Bhadelia RA, Bogdan AR, Wolpert SM, Lev S, Appignani BA, Heilman CB. Cerebrospinal fluid flow waveforms: analysis in patients with Chiari I malformation by means of gated phase-contrast MR imaging velocity measurements. Radiology. 1995;196:195–202.

    Article  CAS  PubMed  Google Scholar 

  58. Alperin NJ, Lee SH, Loth F, Raksin PB, Lichtor T. MR-intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging—baboon and human study. Radiology. 2000;217:877–85.

    Article  CAS  PubMed  Google Scholar 

  59. Cousins J, Haughton V. Motion of the cerebellar tonsils in the foramen magnum during the cardiac cycle. AJNR Am J Neuroradiol. 2009;30(8):1587–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hentschel S, Mardal KA, Lovgren AE, Linge S, Haughton V. Characterization of cyclic CSF flow in the foramen magnum and upper cervical spinal canal with MR flow imaging and computational fluid dynamics. AJNR Am J Neuroradiol. 2010;31(6):997–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maier SE, Hardy CJ, Jolesz FA. Brain and cerebrospinal fluid motion: real-time quantification with M-mode MR imaging. Radiology. 1994;193:477–83.

    Article  CAS  PubMed  Google Scholar 

  62. Poncelet BP, Wedeen VJ, Weisskoff RM, Cohen MS. Brain parenchyma motion: measurement with cine echo-planar MR imaging. Radiology. 1992;185:645–51.

    Article  CAS  PubMed  Google Scholar 

  63. Ventureyra EC, Aziz HA, Vassilyadi M. The role of cine flow MRI in children with Chiari I malformation. Childs Nerv Syst. 2003;19(2):109–13.

    Article  PubMed  Google Scholar 

  64. Pujol J, Roig C, Capdevila A, Pou A, Marti-Vilalta JL, Kulisevsky J, et al. Motion of the cerebellar tonsils in Chiari type I malformation studied by cine phase-contrast MRI. Neurology. 1995;45(9):1746–53.

    Article  CAS  PubMed  Google Scholar 

  65. Terae S, Miyasaka K, Abe S, Abe H, Tashiro K. Increased pulsatile movement of the hindbrain in syringomyelia associated with the Chiari malformation: cine-MRI with presaturation bolus tracking. Neuroradiology. 1994;36:125–9.

    Article  CAS  PubMed  Google Scholar 

  66. Leung V, Magnussen JS, Stoodley M, Bilston LE. Cerebellar and hindbrain motion in Chiari malformation with and without syringomyelia. J Neurosurg Spine. 2016;24:546–55.

    Article  PubMed  Google Scholar 

  67. Sharma A, Parsons MS, Pilgram TK. Balanced steady-state free-precession MR imaging for measuring pulsatile motion of the cerebellar tonsils during the cardiac cycle: a reliability study. Neuroradiology. 2012;54(2):133–8.

    Article  PubMed  Google Scholar 

  68. Radmanesh A, Greenberg JK, Chatterjee A, Smyth MD, Limbrick DD, Sharma A. Tonsillar pulsatility before and after surgical decompression for children with Chiari malformation type 1: an application for true fast imaging with steady state precession. Neuroradiology. 2015;57:387–93.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bunck AC, Kröger JR, Jüttner A, Brentrup A, Fiedler B, Schaarschmidt F, et al. Magnetic resonance 4D flow characteristics of cerebrospinal fluid at the craniocervical junction and the cervical spinal canal. Eur Radiol. 2011;21:1788–96.

    Article  PubMed  Google Scholar 

  70. Bhadelia R, Frederick E, Patz S, Dubey P, Erbay SH, Do-Dai D, et al. Cough-associated headache in patients with Chiari I malformation: CSF flow analysis by means of cine phase-contrast MR imaging. AJNR Am J Neuroradiol. 2011;32(4):739–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  72. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13(4):534–46.

    Article  PubMed  Google Scholar 

  74. Sundgren PC, Dong Q, Gómez-Hassan D, Mukherji SK, Maly P, Welsh R. Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology. 2004;46(5):339–50.

    Article  CAS  PubMed  Google Scholar 

  75. Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson A. Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol. 2008;7(8):715–27.

    Article  PubMed  Google Scholar 

  76. Yamada K, Sakai K, Akazawa K, Yuen S, Nishimura T. MR tractography: a review of its clinical applications. Magn Reson Med Sci. 2009;8(4):165–74.

    Article  PubMed  Google Scholar 

  77. Voineskos AN, Rajji TK, Lobaugh NJ, Miranda D, Shenton ME, Kennedy JL, et al. Age-related decline in white matter tract integrity and cognitive performance: a DTI tractography and structural equation modeling study. Neurobiol Aging. 2012;33(1):21–34.

    Article  PubMed  Google Scholar 

  78. White T, Nelson M, Lim KO. Diffusion tensor imaging in psychiatric disorders. Top Magn Reson Imaging. 2008;19(2):97–109.

    Article  PubMed  Google Scholar 

  79. Shimony JS, Sheline YI, D’Angelo G, Epstein AA, Benzinger TL, Mintun MA, et al. Diffuse microstructural abnormalities of normal-appearing white matter in late life depression: a diffusion tensor imaging study. Biol Psychiatry. 2009;66(3):245–52.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kumar M, Rathore RK, Srivastava A, Yadav SK, Behari S, Gupta RK. Correlation of diffusion tensor imaging metrics with neurocognitive function in Chiari I malformation. World Neurosurg. 2011;76(1–2):189–94.

    Article  PubMed  Google Scholar 

  81. Eshetu T, Meoded A, Jallo GI, Carson BS, Huisman TA, Poretti A. Diffusion tensor imaging in pediatric Chiari type I malformation. Dev Med Child Neurol. 2014;56(8):742–8.

    Article  PubMed  Google Scholar 

  82. Abeshaus S, Friedman S, Poliachik S, Poliakov A, Shaw DWW, Ojemann J, et al. Diffusion tensor imaging changes with decompression of Chiari I malformation. Neurosurgery. 2012;71:E578.

    Article  Google Scholar 

  83. Hatem SM, Attal N, Ducreux D, Gautron M, Parker F, Plaghki L, et al. Assessment of spinal somatosensory systems with diffusion tensor imaging in syringomyelia. J Neurol Neurosurg Psychiatry. 2009;80(12):1350–6.

    Article  CAS  PubMed  Google Scholar 

  84. Yan H, Zhu Z, Liu Z, Zhang X, Sun X, Sha S, et al. Diffusion tensor imaging in cervical syringomyelia secondary to Chiari I malformation: preliminary results. Spine. 2015;40(7):E381–7.

    Article  PubMed  Google Scholar 

  85. Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y. Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg. 1997;86(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  86. Milhorat TH, Chou MW, Trinidad EM, Kula RW, Mandell M, Wolpert C, et al. Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery. 1999;44(5):1005–17.

    Article  CAS  PubMed  Google Scholar 

  87. Karagoz F, Izgi N, Kapijcijoglu Sencer S. Morphometric measurements of the cranium in patients with Chiari type I malformation and comparison with the normal population. Acta Neurochir. 2002;144(2):165–71.

    Article  CAS  PubMed  Google Scholar 

  88. Milhorat TH, Nishikawa M, Kula RW, Dlugacz YD. Mechanisms of cerebellar tonsil herniation in patients with Chiari malformations as guide to clinical management. Acta Neurochir. 2010;152(7):1117–27.

    Article  PubMed  Google Scholar 

  89. Besachio DA, Khaleel Z, Shah L. Odontoid process inclination in normal adults and in an adult population with Chiari malformation type I. J Neurosurg Spine. 2015;23:701–6.

    Article  PubMed  Google Scholar 

  90. Noudel R, Jovenin N, Eap C, Scherpereel B, Pierot L, Rousseaux P. Incidence of basioccipital hypoplasia in Chiari malformation type I: comparative morphometric study of the posterior cranial fossa. Clinical article. J Neurosurg. 2009;111(5):1046–52.

    Article  PubMed  Google Scholar 

  91. Markunas CA, Enterline DS, Dunlap K, Soldano K, Cope H, Stajich J, et al. Genetic evaluation and application of posterior cranial Fossa traits as Endophenotypes for Chiari type I malformation. Ann Hum Genet. 2014;78:1–12.

    Article  CAS  PubMed  Google Scholar 

  92. Smoker WRK. Craniovertebral junction: Normal anatomy, craniometry, and congenital anomalies. Radiographics. 1994;14:255–77.

    Article  CAS  PubMed  Google Scholar 

  93. Vega A, Quintana F, Berciano J. Basichondrocranium anomalies in adult Chiari type I malformation: amorphometric study. J Neurol Sci. 1990;99(2–3):137–45.

    Article  CAS  PubMed  Google Scholar 

  94. Khalsa SSS, Geh N, Martin BA, Allen PA, Strahle J, Loth F, et al. Morphometric and volumetric comparison of 102 children with symptomatic and asymptomatic Chiari malformation type I. J Neurosurg Pediatr. 2018;21(1):65–71.

    Article  PubMed  Google Scholar 

  95. Alperin N, Loftus JR, Oliu CJ, Bagci A, Lee SH, Ertl-Wagner B, et al. MR measurement of the posterior cranial morphology and CSF physiology in Chiari malformation type I. Neurosurgery. 2014;75:515–22.

    Article  PubMed  Google Scholar 

  96. Bagci AM, Lee SH, Nagornaya N, Green BA, Alperin N. Automated posterior cranial Fossa Volumetry by MRI: applications to Chiari malformation type I. AJNR Am J Neuroradiol. 2013;34(9):1758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Khalsa SSS, Siu A, DeFreitas TA, Cappuzzo JM, Myseris JS, Magge SN, et al. Comparison of posterior fossa volumes and clinical outcomes after decompression of Chiari malformation type I. J Neurosurg Pediatr. 2017;19:511–7.

    Article  PubMed  Google Scholar 

  98. McGirt MJ, Nimjee SM, Fuchs HE, George TM. Relationship of cine phase-contrast magnetic resonance imaging with the outcome after decompression for Chiari I malformations. Neurosurgery. 2006;59(1):140–6.

    Article  PubMed  Google Scholar 

  99. Krishna V, Sammartino F, Yee P, Mikulis D, Walker M, Elias G, et al. Diffusion tensor assessment of microstructural brainstem integrity in Chiari malformation type I. J Neurosurg. 2016;125(5):1112–9.

    Article  PubMed  Google Scholar 

  100. Noudel R, Gomis P, Sotoares G, Bazin A, Pierot L, Pruvo JP, et al. Posterior fossa volume increase after surgery for Chiari malformation type I: a quantitative assessment using magnetic resonance imaging and correlations with the treatment response. J Neurosurg Pediatr. 2017;19(5):511–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami W. Eldaya .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Represents a normal subject with no Chiari I deformity and normal flow studies at the foramen magnum. The videos represent the same patient presented in Fig. 28.1. (a) Sagittal second phase cine with a VENC of 10 showing normal flow at the foramen magnum anteriorly and posteriorly. (MP4 5803 kb)

Sagittal phase-contrast cine with a VENC of 10 showing normal bidirectional flow at the foramen magnum anteriorly and posteriorly (MP4 5874 kb)

Represents a patient with Chiari I deformity with normal flow studies at the foramen magnum. The videos represent the same patient presented in Fig. 28.2. (a) Sagittal second phase cine with a VENC of 10 showing normal flow at the foramen magnum anteriorly and posteriorly. (MP4 4839 kb)

Sagittal phase-contrast cine with a VENC of 10 showing normal bidirectional flow at the foramen magnum anteriorly and posteriorly (MP4 5451 kb)

Represents a patient with Chiari I deformity with mild decrease of flow posteriorly. The videos represent the same patient presented in Fig. 28.3. (a) Sagittal second phase cine with a VENC of 10 showing normal flow at the foramen magnum anteriorly and mildly decreased flow posteriorly. (MP4 2124 kb)

Sagittal phase-contrast cine with a VENC of 10 showing normal flow at the foramen magnum anteriorly and mildly decreased flow posteriorly (MP4 4244 kb)

Represents a patient with Chiari I deformity with absent flow posteriorly. The videos represent the same patient presented in Fig. 28.4. (a) Sagittal second phase cine with a VENC of 10 showing normal flow at the foramen magnum anteriorly with absent flow posteriorly. (MP4 3440 kb)

Sagittal phase-contrast cine with a VENC of 10 showing normal flow at the foramen magnum anteriorly and absent flow posteriorly (MP4 3648 kb)

Represents a patient with Chiari I deformity with diminished flow anteriorly and absent flow posteriorly. The videos represent the same patient presented in Fig. 28.5. (a) Sagittal second phase cine with a VENC of 10 showing diminished flow at the foramen magnum anteriorly with absent flow posteriorly. (MP4 2671 kb)

Sagittal phase-contrast cine with a VENC of 10 showing diminished flow at the foramen magnum anteriorly and absent flow posteriorly (MP4 3589 kb)

Represents a patient with Chiari I deformity with complex flow anteriorly and absent flow posteriorly. The videos represent the same patient presented in Fig. 28.6. (a) Sagittal second phase cine with a VENC of 5 showing relatively normal flow at the foramen magnum anteriorly with absent flow posteriorly. (MP4 6293 kb)

Sagittal phase-contrast cine with a VENC of 5 showing aliasing flow at the foramen magnum anteriorly and absent flow posteriorly (see Fig. 28.6 and text for detailed discussion of pathophysiology of aliasing). (MP4 9613 kb)

Sagittal phase-contrast cine with a VENC of 10 showing marked improvement of the aliasing flow at the foramen magnum anteriorly with persistent absent flow posteriorly (see Fig. 28.6 and text for detailed discussion of pathophysiology of aliasing). (MP4 8371 kb)

Axial phase-contrast cine at the foramen magnum with a VENC of 10 showing residual aliasing flow at the foramen magnum anteriorly with persistent absent flow posteriorly (see Fig. 28.6 and text for detailed discussion of pathophysiology of aliasing) (MP4 4339 kb)

Represents a patient with Chiari I deformity with absent flow anteriorly and posteriorly. The videos represent the same patient presented in Fig. 28.7. (a) Sagittal second phase cine with a VENC of 10 showing absent flow at the foramen magnum anteriorly and posteriorly. (MP4 4298 kb)

Sagittal phase-contrast cine with a VENC of 10 showing absent flow at the foramen magnum anteriorly and posteriorly (MP4 4112 kb)

Represents a patient with Chiari I deformity with transient obstruction of flow anteriorly and posteriorly secondary to marked tonsillar pulsatility. The videos represent the same patient presented in Fig. 28.8. (a) Sagittal second phase cine with a VENC of 10 showing transient absent flow at the foramen magnum anteriorly and posteriorly secondary to marked tonsillar pulsatility (MP4 2508 kb)

Sagittal phase-contrast cine with a VENC of 10 showing transient absent flow at the foramen magnum anteriorly and posteriorly secondary to marked tonsillar pulsatility (MP4 3173 kb)

Sagittal true-FISP video shows hyperdynamic pulsatile cerebellar tonsils demonstrating marked anterior and inferior motion through the cardiac cycle (video slowed to 4 frames per second (normal display is at 30 frames per second) to better demonstrate the tonsillar motion). (MP4 1672 kb)

Sagittal second phase cine with a VENC of 10 postsurgical decompression showing significant improvement of the flow at the foramen magnum with resolution of the preoperative transient absent flow at the foramen magnum. (MP4 1662 kb)

Sagittal phase-contrast cine with a VENC of 10 postsurgical decompression showing significant improvement of the flow at the foramen magnum with resolution of the preoperative transient absent flow at the foramen magnum. (MP4 2839 kb)

Sagittal true-FISP video shows persistent but improved pulsatile cerebellar tonsillar motion through the cardiac cycle (video slowed to 4 frames per second (normal display is at 30 frames per second) to better demonstrate the tonsillar motion) (MP4 1760 kb)

Represents a patient with Chiari I deformity with increased tonsillar pulsatility. Note the increased pulsatile craniocaudal and anteroposterior displacement (MP4 1911 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eldaya, R.W., Strahle, J.M., Goyal, M.S. (2020). Advanced Imaging of Chiari I Malformations. In: Tubbs, R., Turgut, M., Oakes, W. (eds) The Chiari Malformations. Springer, Cham. https://doi.org/10.1007/978-3-030-44862-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44862-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44861-5

  • Online ISBN: 978-3-030-44862-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics