Skip to main content

Measurement of the Volume of the Posterior Cranial Fossa Using MRI

  • Chapter
  • First Online:
The Chiari Malformations

Abstract

Since the development of the neuroimaging sciences, the posterior cranial fossa (PCF) has been anatomically evaluated and measured volumetrically. Radiologically, the PCF volume is an important neuroimaging finding in Chiari malformation type I (CM I), but recent neuroimaging studies have revealed conflicting volumetric changes in the PCF in CM I patients. In this chapter, anatomical details of the PCF, different automated imaging techniques, and volumetric changes in the PCF will be reviewed. The main purpose is to gather information about automated imaging methods for the PCF and techniques for measuring brain substructures in patients with CM I and their clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lirng JF, Fuh JL, Chen YY, Wang SJ. Posterior cranial fossa crowdedness is related to age and sex: a magnetic resonance volumetric study. Acta Radiol. 2005;46:737–42.

    Article  CAS  PubMed  Google Scholar 

  2. Bagci AM, Lee SH, Nagornaya N, Green BA, Alperin N. Automated posterior cranial fossa volumetry by MRI: applications to Chiari malformation type I. AJNR Am J Neuroradiol. 2013;34:1758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cabezas M, Oliver A, Llado X, Freixenet J, Cuadra MB. A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Prog Biomed. 2011;104:e158–77.

    Article  Google Scholar 

  4. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.

    Article  CAS  PubMed  Google Scholar 

  5. Ulutabanca H, Acer N, Küçük A, Doğan S, Tümtürk A, Kurtsoy A, Sağiroğlu A, Bilgen M. Chiari type I malformation with high foramen magnum anomaly. Folia Morphol (Warsz). 2015;74:402–6.

    Article  CAS  Google Scholar 

  6. Coupé P, Manjón JV, Fonov V, Pruessner J, Robles M, Collins DL. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage. 2011;54:940–54.

    Article  PubMed  Google Scholar 

  7. Ma J, Ma HT, Li H, Ye C, Wu D, Tang X, Miller M, Mori S. Fast atlas pre-selection procedure for multi-atlas based brain segmentation. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:3053–6.

    Google Scholar 

  8. Manjon JV, Coupé P. volBrain: an online MRI brain volumetry system. Front Neuroinform. 2016;10:1–14.

    Article  Google Scholar 

  9. Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y. Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg. 1997;86:40–7.

    Article  CAS  PubMed  Google Scholar 

  10. Noudel R, Gomis P, Sotoares G, Bazin A, Pierot L, Pruvo JP, Bordet R, Roche PH. Posterior fossa volume increase after surgery for Chiari malformation type I: a quantitative assessment using magnetic resonance imaging and correlations with the treatment response. J Neurosurg. 2011;115:647–58.

    Article  PubMed  Google Scholar 

  11. Ertekin T, Degermenci M, Ucar I, Sagiroglu A, Atay E, Susar H. The intracranial and posterior cranial fossa volumes and volume fractions in children: a stereological study. Int J Morphol. 2017;35:1465–72.

    Article  Google Scholar 

  12. Milhorat TH, Chou MW, Trinidad EM, Kula RW, Mandel M, Wolpert C, Speer MC. Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery. 1999;44:1005–17.

    Article  CAS  PubMed  Google Scholar 

  13. Vurdem ÜE, Acer N, Ertekin T, Savranlar A, Inci MF. Analysis of the volumes of the posterior cranial fossa, cerebellum, and herniated tonsils using the stereological methods in patients with Chiari type I malformation. ScientificWorldJournal. 2012;2012:616934.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Enver IB, Aisylu TF, Elena GM, Alexey SS, John DH. Epidemiology of symptomatic Chiari malformation in Tatarstan: regional and ethnic differences in prevalence. Neurosurgery. 2019;84(5):1090–7.

    Article  Google Scholar 

  15. Rolls ET, Joliot M, Tzourio-Mazoyer N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. NeuroImage. 2015;122:1–5.

    Article  PubMed  Google Scholar 

  16. Vogl TJ, Harth M. “Neuro imaging of the posterior fossa”, pp. 1–15. 2011. Retrieved from https://pdfs.semanticscholar.org/5f8d/0abf76715d2dfadca3fc943da1beba32acb1.pdf.

  17. Grassi W, Filippucci E. A brief history of ultrasound in rheumatology: where we were. Clin Exp Rheumatol. 2014;32(1 Suppl 80):S3–6.

    PubMed  Google Scholar 

  18. Wang SH, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83:518–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ailion AS, King TZ, Wang L, Fox ME, Mao H, Morris RM, Crosson B. Cerebellar atrophy in adult survivors of childhood cerebellar tumor. J Int Neuropsychol Soc. 2016;22:501–11.

    Article  PubMed  Google Scholar 

  20. Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Marien P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110:763–73.

    Article  PubMed  Google Scholar 

  21. Eccles JC, Ito M, Szentagothai J. The cerebellum as a neuronal machine. Berlin, Heidelberg, New York: Springer; 1967. pp. 335. 62s

    Book  Google Scholar 

  22. Odaci E, Bahadir A, Yildirim Ş. Volume estimation using the Cavalieri principle on computerized tomography and magnetic resonance images and its clinical application: review. Türkiye Klinikleri J Med Sci. 2005;25:421–8.

    Google Scholar 

  23. Apolito G, Calandrelli R, Gaudino S, Tumino M, Pedone L, Colosimo C. Posterior fossa morphometry and volumetric analysis in three different groups of pediatric patients: congenital Chiari type 1 malformation, posterior craniosynostosis and Costello syndrome. Presented in ECR 2014, Poster No.: C-0685, EPOS. 2014). pp. 1–19. https://doi.org/10.1594/ecr2014/C-0685.

  24. Alperin N, Loftus JR. MRI measures of posterior cranial fossa morphology and CSF physiology in Chiari malformation type I. Neurosurgery. 2014;75:515–22.

    Article  PubMed  Google Scholar 

  25. Taştemur Y, Sabanciogullari V, İsmail S, Sönmez M, Çimen M. The relationship of the posterior cranial fossa, the cerebrum, and cerebellum morphometry with tonsiller herniation. Iran J Radiol. 2017;14(1):24436.

    Google Scholar 

  26. Allen LS, Richey MF, Chai YM, Gorski RA. Sex differences in the corpus callosum of the living human being. J Neurosci. 1991;11:933–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Furtado SV, Thakre DJ, Venkatesh PK, Reddy K, Hegde AS. Morphometric analysis of foramen magnum dimensions and intracranial volume in pediatric Chiari I malformation. Acta Neurochir (Wien). 2010;152:221–7.

    Article  Google Scholar 

  28. Sekula RF, Jannetta PJ, Casey KF, Marchan EM, Sekula LK, McCrady CS. Dimensions of the posterior fossa in patients symptomatic for Chiari I malformation but without cerebellar tonsillar descent. Cerebrospinal Fluid Res. 2005;2:11.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Manjón JV, Tohka J, Robles M. Improved estimates of partial volume coefficients from noisy brain MRI using spatial context. NeuroImage. 2010;53:480–90.

    Article  PubMed  Google Scholar 

  30. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–20.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Avants BB, Tustiso NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage. 2011;54:2033–44.

    Article  PubMed  Google Scholar 

  32. Manjón JV, Eskildsen SF, Coupé P, Romero JE, Collins DL, Robles M. Nonlocal intracranial cavity extraction. Int J Biomed Imaging. 2014;2014:820205.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Romero JE, Manjón JV, Tohka J, Coupé P, Robles M. NABS: non-local automatic brain hemisphere segmentation. Magn Reson Imaging. 2015;33:474–84.

    Article  PubMed  Google Scholar 

  34. Boccardi M, Bocchetta M, Morency FC, Collins DL, Nishikawa M, Ganzola R, Grothe MJ, Wolf D, Redolfi A, Pievani M, Antelmi L, Fellgiebel A, Matsuda H, Teipel S, Duchesne S, Jack CR Jr, Frisoni GB. EADC-ADNI Working Group on the harmonized protocol for manual hippocampal segmentation and for the Alzheimer's disease neuroimaging initiative, 2015. Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol. Alzheimers Dement. 2014;11:175–83.

    Article  Google Scholar 

  35. Huhtaniska S, Jääskeläinen E, Heikka T, Moilanen JS, Lehtiniemi H, Tohka J, Manjón JV, Coupé P, Björnholm L, Koponen H, Veijola J, Isohanni M, Kiviniemi V, Murray GK, Miettunen J. Long-term antipsychotic and benzodiazepine use and brain volume changes in schizophrenia: the Northern Finland Birth Cohort 1966 study. Psychiatry Res Neuroimaging. 2017;266:73–82.

    Article  PubMed  Google Scholar 

  36. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomicalparcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15:273–89.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S. DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Prog Biomed. 2006 Feb;81(2):106–16.

    Article  Google Scholar 

  38. Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Hsu JT, Miller MI, van Zijl PC, Albert M, Lyketsos CG, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Mazziotta J, Mori S. Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. NeuroImage. 2009;46:486–99.

    Article  PubMed  Google Scholar 

  39. Ceritoglu C, Oishi K, Li X, Chou MC, Younes L, Albert M, Lyketsos C, Van Zijl PCM, Miller MI, Mori S. Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. NeuroImage. 2009;47:618–27.

    Article  PubMed  Google Scholar 

  40. Djamanakova A, Tang X, Li X, Faria AV, Ceritoglu C, Oishi K, Hillis AE, Albert M, Lyketsos C, Miller MI, Mori S. Tools for multiple granularity analysis of brain MRI data for individualized image analysis. NeuroImage. 2014;101:168–76.

    Article  PubMed  Google Scholar 

  41. Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C. Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging. 2009;28:1266–77.

    Article  PubMed  Google Scholar 

  42. Chiari H. Über veränderungen des kleinhirns, des pons und der medulla oblongata in folge von congenitaler hydrocephalie des grosshirns (concerning changes in the cerebellum, pons, and medulla oblongata due to hydrocephalus of the cerebrum). Denkschr Akad Wissensch. 1896;63:71–116.

    Google Scholar 

  43. Khalsa SSS, Siu A, Freitas TA, Cappuzzo JM, Myseros JS, Magge SN, Oluigbo CO, Keating RF. Comparison of posterior fossa volumes and clinical outcomes after decompression of Chiari malformation type I. J Neurosurg Pediatr. 2017;19:511–7.

    Article  PubMed  Google Scholar 

  44. Badie B, Mendoza D, Batzdorf U. Posterior fossa volume and response to suboccipital decompression in patients with Chiari I malformation. Neurosurgery. 1995;37:214–8.

    Article  CAS  PubMed  Google Scholar 

  45. Fisahn C, Shoja MM, Turgut M, Oskouian RJ, Oakes WJ, Tubbs RS. The Chiari 3.5 malformation: a review of the only reported case. Childs Nerv Syst. 2016;32:2317–9.

    Article  PubMed  Google Scholar 

  46. Furtado SV, Reddy K, Hegde AS. Posterior fossa morphometry in symptomatic pediatric and adult Chiari I malformation. J Clin Neurosci. 2009;16:1449–54.

    Article  PubMed  Google Scholar 

  47. Aasef GS, Fatema FG. Neuro-ophthalmology of type 1 Chiari malformation. Expert Rev Ophthalmol. 2015;10:351–7.

    Article  CAS  Google Scholar 

  48. Karagoz F, Izgi N, Kapicioglu Sencer S. Morphometric measurements of the cranium in patients with Chiari type I malformation and comparison with the normal population. Acta Neurochir. 2002;144:165–71.

    Article  CAS  PubMed  Google Scholar 

  49. Işik N. Chiari malformation and syringomyelia. Turk Neurosurg. 2013;23:185–94.

    Google Scholar 

  50. Acer N, Dolu N, Zararsiz G, Dogan MS, Gümüş K, Özmen S, Kara AY, Soysal H, Per H, Bilgen M. Anatomical characterization of ADHD using an atlas-based analysis: a diffusion tensor imaging study. Eurobiotech J. 2017;1:46–56.

    Article  Google Scholar 

  51. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62:782–90.

    Article  PubMed  Google Scholar 

  52. Tubbs RS, Lyerly MJ, Loukas M, Shoja MM, Oakes WJ. The pediatric Chiari I malformation: a review. Childs Nerv Syst. 2007;23:1239–50.

    Article  PubMed  Google Scholar 

  53. Iqbal S, Robert AP, Mathew D. Computed tomographic study of posterior cranial fossa, foramen magnum, and its surgical implications in Chiari malformations. Asian J Neurosurg. 2018;1:428–34.

    Google Scholar 

  54. Urbizu A, Poca MA, Vidal X, Rovira A, Sahoqulllo J, Macaya A. MRI-based morphometric analysis of posterior cranial fossa in the diagnosis of Chiari malformation type I. J Neuroimaging. 2007;24:250–6.

    Article  Google Scholar 

  55. Hwank HS, Moon JG, Kim CH, Oh SM, Song JH, Jeong JH. The comparative morphometric study of the posterior cranial fossa: what is effective approaches to the treatment of Chiari malformation type 1? J Korean Neurosurg Soc. 2013;54:405–10.

    Article  Google Scholar 

  56. Trigylidas T, Baronia B, Vassilyadi M, Ventureyra EC. Posterior fossa dimension and volume estimates in pediatric patients with Chiari I malformations. Childs Nerv Syst. 2008;24:329–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acer, N., Turgut, M., Yilmaz, S., Güler, H.S. (2020). Measurement of the Volume of the Posterior Cranial Fossa Using MRI. In: Tubbs, R., Turgut, M., Oakes, W. (eds) The Chiari Malformations. Springer, Cham. https://doi.org/10.1007/978-3-030-44862-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44862-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44861-5

  • Online ISBN: 978-3-030-44862-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics