Skip to main content

Research on the Pathophysiology of Chiari I-Related Symptoms and Syringomyelia, with Emphasis on Dynamic MRI Techniques

  • Chapter
  • First Online:
The Chiari Malformations

Abstract

The pathophysiology of Chiari-related symptoms and syringomyelia remains enigmatic. Present-day technology, most notably magnetic resonance imaging, is providing progressively more sophisticated opportunities to test traditional as well as contemporary theories while adding to conventional animal models a selection of promising mechanical and computational representations of syringomyelia and its etiologies. We will briefly touch on the past and present of Chiari-related syringomyelia research with emphasis on essential questions related to the development of anatomical anomalies and the constellation of symptoms with which they are associated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams B. Cerebrospinal fluid pressure-gradients in spina bifida cystica, with special reference to the Arnold-Chiari malformation and aqueductal stenosis. Dev Med Child Neurol Suppl. 1975;35:138–50.

    Google Scholar 

  2. Williams B. On the pathogenesis of syringomyelia: a review. J R Soc Med. 1980;73(11):798–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gardner WJ, Angel J. The mechanism of syringomyelia and its surgical correction. Clin Neurosurg. 1958;6:131–40.

    Article  CAS  PubMed  Google Scholar 

  4. Gardner WJ. Syringomyelia. Surg Neurol. 1977;7(6):370.

    CAS  PubMed  Google Scholar 

  5. Gardner WJ, McMurray FG. “Non-communicating” syringomyelia: a non-existent entity. Surg Neurol. 1976;6(4):251–6.

    CAS  PubMed  Google Scholar 

  6. Pillay PK, Awad IA, Hahn JF. Gardner’s hydrodynamic theory of syringomyelia revisited. Cleve Clin J Med. 1991;59(4):373–80.

    Article  Google Scholar 

  7. West RJ, Williams B. Radiographic studies of the ventricles in syringomyelia. Neuroradiology. 1980;20(1):5–16.

    Article  CAS  PubMed  Google Scholar 

  8. Batzdorf U. Chiari I malformation with syringomyelia. Evaluation of surgical therapy by magnetic resonance imaging. J Neurosurg. 1988;68(5):726–30.

    Article  CAS  PubMed  Google Scholar 

  9. Milhorat TH, Kotzen RM. Stenosis of the central canal of the spinal cord following inoculation of suckling hamsters with reovirus type I. J Neurosurg. 1994;81(1):103–6.

    Article  CAS  PubMed  Google Scholar 

  10. Williams B. The distending force in the production of “communicating syringomyelia”. Lancet. 1969;2(7613):189–93.

    Article  CAS  PubMed  Google Scholar 

  11. Williams B. A demonstration analogue for ventricular and intraspinal dynamics (DAVID). J Neurol Sci. 1974;23(3):445–61.

    Article  CAS  PubMed  Google Scholar 

  12. Rusbridge C, Greitz D, Iskandar BJ. Syringomyelia: current concepts in pathogenesis, diagnosis, and treatment. J Vet Intern Med. 2006;20(3):469–79.

    Article  PubMed  Google Scholar 

  13. Ball MJ, Dayan AD. Pathogenesis of syringomyelia. Lancet. 1972;2(7781):799–801.

    Article  CAS  PubMed  Google Scholar 

  14. Aboulker J. Syringomyelia and intra-rachidian fluids. V. Syringomyeliac cavities with low power. Neurochirurgie. 1979;25(Suppl 1):38–54.

    PubMed  Google Scholar 

  15. Lonser RR, Heiss JD, Oldfield EH. Syringomyelia, hemangioblastomas, and Chiari I malformation. Case illustration. J Neurosurg. 1999;90(1):169.

    Article  CAS  PubMed  Google Scholar 

  16. Oldfield EH, Muraszko K, Shawker TH, Patronas NJ. Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils. Implications for diagnosis and treatment. J Neurosurg. 1994;80(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  17. Oldfield EH. Syringomyelia. J Neurosurg. 2001;95(1 Suppl):153–5.

    CAS  PubMed  Google Scholar 

  18. Fischbein NJ, Dillon WP, Cobbs C, Weinstein PR. The “presyrinx” state: a reversible myelopathic condition that may precede syringomyelia. AJNR Am J Neuroradiol. 1999;20(1):7–20.

    CAS  PubMed  Google Scholar 

  19. Levy EI, Heiss JD, Kent MS, Riedel CJ, Oldfield EH. Spinal cord swelling preceding syrinx development. Case report. J Neurosurg. 2000;92(1 Suppl):93–7.

    CAS  PubMed  Google Scholar 

  20. Stoodley MA, Brown SA, Brown CJ, Jones NR. Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord. J Neurosurg. 1997;86(4):686–93.

    Article  CAS  PubMed  Google Scholar 

  21. Stoodley MA, Jones NR, Brown CJ. Evidence for rapid fluid flow from the subarachnoid space into the spinal cord central canal in the rat. Brain Res. 1996;707(2):155–64.

    Article  CAS  PubMed  Google Scholar 

  22. Egnor M, Rosiello A, Zheng L. A model of intracranial pulsations. Pediatr Neurosurg. 2001;35(6):284–98.

    Article  CAS  PubMed  Google Scholar 

  23. Greitz D. Unraveling the riddle of syringomyelia. Neurosurg Rev. 2006;29(4):251–63; discussion 64.

    Article  PubMed  Google Scholar 

  24. Josephson A, Greitz D, Klason T, Olson L, Spenger C. A spinal thecal sac constriction model supports the theory that induced pressure gradients in the cord cause edema and cyst formation. Neurosurgery. 2001;48(3):636–45; discussion 45–6.

    Article  CAS  PubMed  Google Scholar 

  25. Carpenter PW, Berkouk K, Lucey AD. Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 2: mechanisms for the pathogenesis of syringomyelia. J Biomech Eng. 2003;125(6):857–63.

    Article  CAS  PubMed  Google Scholar 

  26. Williams B. Cerebrospinal fluid pressure changes in response to coughing. Brain. 1976;99(2):331–46.

    Article  CAS  PubMed  Google Scholar 

  27. Williams B. Chronic herniation of the hindbrain. Ann R Coll Surg Engl. 1981;63(1):9–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kalata W, Martin BA, Oshinski JN, Jerosch-Herold M, Royston TJ, Loth F. MR measurement of cerebrospinal fluid velocity wave speed in the spinal canal. IEEE Trans Biomed Eng. 2009;56(6):1765–8.

    Article  PubMed  Google Scholar 

  29. Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Stahlberg F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology. 1992;34(5):370–80.

    Article  CAS  PubMed  Google Scholar 

  30. Citrin CM, Sherman JL, Gangarosa RE, Scanlon D. Physiology of the CSF flow-void sign: modification by cardiac gating. AJR Am J Roentgenol. 1987;148(1):205–8.

    Article  CAS  PubMed  Google Scholar 

  31. Armonda RA, Citrin CM, Foley KT, Ellenbogen RG. Quantitative cine-mode magnetic resonance imaging of Chiari I malformations: an analysis of cerebrospinal fluid dynamics. Neurosurgery. 1994;35(2):214–23; discussion 23–4.

    Article  CAS  PubMed  Google Scholar 

  32. Shaffer N, Martin B, Loth F. Cerebrospinal fluid hydrodynamics in type I Chiari malformation. Neurol Res. 2011;33(3):247–60.

    Article  PubMed  Google Scholar 

  33. Heiss JD, Patronas N, DeVroom HL, Shawker T, Ennis R, Kammerer W, et al. Elucidating the pathophysiology of syringomyelia. J Neurosurg. 1999;91(4):553–62.

    Article  CAS  PubMed  Google Scholar 

  34. Alperin N, Sivaramakrishnan A, Lichtor T. Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J Neurosurg. 2005;103(1):46–52.

    Article  PubMed  Google Scholar 

  35. Martin BA, Labuda R, Royston TJ, Oshinski JN, Iskandar B, Loth F. Spinal subarachnoid space pressure measurements in an in vitro spinal stenosis model: implications on syringomyelia theories. J Biomech Eng. 2010;132(11):111007.

    Article  PubMed  Google Scholar 

  36. Nitz WR, Bradley WG Jr, Watanabe AS, Lee RR, Burgoyne B, O’Sullivan RM, et al. Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology. 1992;183(2):395–405.

    Article  CAS  PubMed  Google Scholar 

  37. Connor SE, O’Gorman R, Summers P, Simmons A, Moore EM, Chandler C, et al. SPAMM, cine phase contrast imaging and fast spin-echo T2-weighted imaging in the study of intracranial cerebrospinal fluid (CSF) flow. Clin Radiol. 2001;56(9):763–72.

    Article  CAS  PubMed  Google Scholar 

  38. Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba Sanal H, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84(1004):758–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shah S, Haughton V, del Rio AM. CSF flow through the upper cervical spinal canal in Chiari I malformation. AJNR Am J Neuroradiol. 2011;32(6):1149–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Struck AF, Haughton VM. Idiopathic syringomyelia: phase-contrast MR of cerebrospinal fluid flow dynamics at level of foramen magnum. Radiology. 2009;253(1):184–90.

    Article  PubMed  Google Scholar 

  41. Krueger KD, Haughton VM, Hetzel S. Peak CSF velocities in patients with symptomatic and asymptomatic Chiari I malformation. AJNR Am J Neuroradiol. 2010;31(10):1837–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang CS, Wang X, Fu CH, Wei LQ, Zhou DQ, Lin JK. Analysis of cerebrospinal fluid flow dynamics and morphology in Chiari I malformation with cine phase-contrast magnetic resonance imaging. Acta Neurochir. 2014;156(4):707–13.

    Article  PubMed  Google Scholar 

  43. Dolar MT, Haughton VM, Iskandar BJ, Quigley M. Effect of craniocervical decompression on peak CSF velocities in symptomatic patients with Chiari I malformation. AJNR Am J Neuroradiol. 2004;25(1):142–5.

    PubMed  PubMed Central  Google Scholar 

  44. McGirt MJ, Atiba A, Attenello FJ, Wasserman BA, Datoo G, Gathinji M, et al. Correlation of hindbrain CSF flow and outcome after surgical decompression for Chiari I malformation. Childs Nerv Syst. 2008;24(7):833–40.

    Article  PubMed  Google Scholar 

  45. Yiallourou TI, Kroger JR, Stergiopulos N, Maintz D, Martin BA, Bunck AC. Comparison of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of cerebrospinal fluid motion in the cervical spine. PLoS One. 2012;7(12):e52284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wentland AL, Wieben O, Korosec FR, Haughton VM. Accuracy and reproducibility of phase-contrast MR imaging measurements for CSF flow. AJNR Am J Neuroradiol. 2010;31(7):1331–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bunck AC, Kroeger JR, Juettner A, Brentrup A, Fiedler B, Crelier GR, et al. Magnetic resonance 4D flow analysis of cerebrospinal fluid dynamics in Chiari I malformation with and without syringomyelia. Eur Radiol. 2012;22(9):1860–70.

    Article  PubMed  Google Scholar 

  48. Bunck AC, Kroger JR, Juttner A, Brentrup A, Fiedler B, Schaarschmidt F, et al. Magnetic resonance 4D flow characteristics of cerebrospinal fluid at the craniocervical junction and the cervical spinal canal. Eur Radiol. 2011;21(8):1788–96.

    Article  PubMed  Google Scholar 

  49. McGirt MJ, Nimjee SM, Fuchs HE, George TM. Relationship of cine phase-contrast magnetic resonance imaging with outcome after decompression for Chiari I malformations. Neurosurgery. 2006;59(1):140–6; discussion -6.

    Article  PubMed  Google Scholar 

  50. Martin BA, Kalata W, Shaffer N, Fischer P, Luciano M, Loth F. Hydrodynamic and longitudinal impedance analysis of cerebrospinal fluid dynamics at the craniovertebral junction in type I Chiari malformation. PLoS One. 2013;8(10):e75335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hofkes SK, Iskandar BJ, Turski PA, Gentry LR, McCue JB, Haughton VM. Differentiation between symptomatic Chiari I malformation and asymptomatic tonsilar ectopia by using cerebrospinal fluid flow imaging: initial estimate of imaging accuracy. Radiology. 2007;245(2):532–40.

    Article  PubMed  Google Scholar 

  52. Brugieres P, Idy-Peretti I, Iffenecker C, Parker F, Jolivet O, Hurth M, et al. CSF flow measurement in syringomyelia. AJNR Am J Neuroradiol. 2000;21(10):1785–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mauer UM, Gottschalk A, Mueller C, Weselek L, Kunz U, Schulz C. Standard and cardiac-gated phase-contrast magnetic resonance imaging in the clinical course of patients with Chiari malformation Type I. Neurosurg Focus. 2011;31(3):E5.

    Article  PubMed  Google Scholar 

  54. Iskandar BJ, Quigley M, Haughton VM. Foramen magnum cerebrospinal fluid flow characteristics in children with Chiari I malformation before and after craniocervical decompression. J Neurosurg. 2004;101(2 Suppl):169–78.

    PubMed  Google Scholar 

  55. Quigley MF, Iskandar B, Quigley ME, Nicosia M, Haughton V. Cerebrospinal fluid flow in foramen magnum: temporal and spatial patterns at MR imaging in volunteers and in patients with Chiari I malformation. Radiology. 2004;232(1):229–36.

    Article  PubMed  Google Scholar 

  56. Heidari Pahlavian S, Yiallourou T, Tubbs RS, Bunck AC, Loth F, Goodin M, et al. The impact of spinal cord nerve roots and denticulate ligaments on cerebrospinal fluid dynamics in the cervical spine. PLoS One. 2014;9(4):e91888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Clarke EC, Fletcher DF, Stoodley MA, Bilston LE. Computational fluid dynamics modelling of cerebrospinal fluid pressure in Chiari malformation and syringomyelia. J Biomech. 2013;46(11):1801–9.

    Article  PubMed  Google Scholar 

  58. Lloyd RA, Fletcher DF, Clarke EC, Bilston LE. Chiari malformation may increase perivascular cerebrospinal fluid flow into the spinal cord: a subject-specific computational modelling study. J Biomech. 2017;65:185–93.

    Article  PubMed  Google Scholar 

  59. Stoverud KH, Langtangen HP, Ringstad GA, Eide PK, Mardal KA. Computational investigation of cerebrospinal fluid dynamics in the posterior cranial fossa and cervical subarachnoid space in patients with Chiari I malformation. PLoS One. 2016;11(10):e0162938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hentschel S, Mardal KA, Lovgren AE, Linge S, Haughton V. Characterization of cyclic CSF flow in the foramen magnum and upper cervical spinal canal with MR flow imaging and computational fluid dynamics. AJNR Am J Neuroradiol. 2010;31(6):997–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Loth F, Yardimci MA, Alperin N. Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng. 2001;123(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  62. Linge SO, Mardal KA, Haughton V, Helgeland A. Simulating CSF flow dynamics in the normal and the Chiari I subarachnoid space during rest and exertion. AJNR Am J Neuroradiol. 2013;34(1):41–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Linge SO, Mardal KA, Helgeland A, Heiss JD, Haughton V. Effect of craniovertebral decompression on CSF dynamics in Chiari malformation type I studied with computational fluid dynamics: laboratory investigation. J Neurosurg Spine. 2014;21(4):559–64.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stoverud KH, Mardal KA, Haughton V, Langtangen HP. CSF flow in Chiari I and syringomyelia from the perspective of computational fluid dynamics. Neuroradiol J. 2011;24(1):20–3.

    Article  PubMed  Google Scholar 

  65. Shaffer N, Martin BA, Rocque B, Madura C, Wieben O, Iskandar BJ, et al. Cerebrospinal fluid flow impedance is elevated in Type I Chiari malformation. J Biomech Eng. 2014;136(2):021012.

    Article  PubMed  Google Scholar 

  66. Lawrence BJ, Luciano M, Tew J, Ellenbogen RG, Oshinski JN, Loth F, et al. Cardiac-related spinal cord tissue motion at the foramen magnum is increased in patients with Type I Chiari malformation and decreases postdecompression surgery. World Neurosurg. 2018;116:e298–307.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Alperin N, Loftus JR, Bagci AM, Lee SH, Oliu CJ, Shah AH, et al. Magnetic resonance imaging-based measures predictive of short-term surgical outcome in patients with Chiari malformation Type I: a pilot study. J Neurosurg Spine. 2017;26(1):28–38.

    Article  PubMed  Google Scholar 

  68. Holdsworth SJ, Rahimi MS, Ni WW, Zaharchuk G, Moseley ME. Amplified magnetic resonance imaging (aMRI). Magn Reson Med. 2016;75(6):2245–54.

    Article  PubMed  Google Scholar 

  69. Leung V, Magnussen JS, Stoodley MA, Bilston LE. Cerebellar and hindbrain motion in Chiari malformation with and without syringomyelia. J Neurosurg Spine. 2016;24(4):546–55.

    Article  PubMed  Google Scholar 

  70. Hofmann E, Warmuth-Metz M, Bendszus M, Solymosi L. Phase-contrast MR imaging of the cervical CSF and spinal cord: volumetric motion analysis in patients with Chiari I malformation. AJNR Am J Neuroradiol. 2000;21(1):151–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pujol J, Roig C, Capdevila A, Pou A, Marti-Vilalta JL, Kulisevsky J, et al. Motion of the cerebellar tonsils in Chiari type I malformation studied by cine phase-contrast MRI. Neurology. 1995;45(9):1746–53.

    Article  CAS  PubMed  Google Scholar 

  72. Alperin N, Loftus JR, Oliu CJ, Bagci AM, Lee SH, Ertl-Wagner B, et al. Magnetic resonance imaging measures of posterior cranial fossa morphology and cerebrospinal fluid physiology in Chiari malformation type I. Neurosurgery. 2014;75(5):515–22; discussion 22.

    Article  PubMed  Google Scholar 

  73. Cousins J, Haughton V. Motion of the cerebellar tonsils in the foramen magnum during the cardiac cycle. AJNR Am J Neuroradiol. 2009;30(8):1587–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aletras AH, Ding S, Balaban RS, Wen H. DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson. 1999;137(1):247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pahlavian SH, Oshinski J, Zhong X, Loth F, Amini R. Regional quantification of brain tissue strain using displacement-encoding with stimulated echoes magnetic resonance imaging. J Biomech Eng. 2018;140(8)1–13.

    Google Scholar 

  76. Soellinger M, Rutz AK, Kozerke S, Boesiger P. 3D cine displacement-encoded MRI of pulsatile brain motion. Magn Reson Med. 2009;61(1):153–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bermans J. Iskandar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koueik, J., Martin, B.A., Iskandar, B.J. (2020). Research on the Pathophysiology of Chiari I-Related Symptoms and Syringomyelia, with Emphasis on Dynamic MRI Techniques. In: Tubbs, R., Turgut, M., Oakes, W. (eds) The Chiari Malformations. Springer, Cham. https://doi.org/10.1007/978-3-030-44862-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44862-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44861-5

  • Online ISBN: 978-3-030-44862-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics